|本期目录/Table of Contents|

[1]韦悦,王晟,纪律律.硒化钌复合碳纳米纤维的制备及其电催化析氢性能[J].浙江理工大学学报,2022,47-48(自科四):496-502.
 WEI Yue,WANG Sheng,JI Lülü.Preparation of ruthenium selenide composited carbon  nanofiber and its electrocatalytic hydrogen evolution performance[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):496-502.
点击复制

硒化钌复合碳纳米纤维的制备及其电催化析氢性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第四期
页码:
496-502
栏目:
出版日期:
2022-09-30

文章信息/Info

Title:
Preparation of ruthenium selenide composited carbon  nanofiber and its electrocatalytic hydrogen evolution performance
文章编号:
1673-3851 (2022) 07-0496-07
作者:
韦悦王晟纪律律
浙江理工大学材料科学与工程学院,杭州 310018
Author(s):
WEI Yue WANG Sheng JI Lülü
School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
静电纺丝硒化钌碳纳米纤维电催化析氢性能
分类号:
TM912-9
文献标志码:
A
摘要:
为提高硒化钌(RuSe 2)催化剂的活性位点数量、导电性和传质扩散能力,采用静电纺丝、碳化和硒化相结合的策略,制备了负载RuSe 2纳米颗粒的N掺杂碳纳米纤维复合材料(RuSe 2@CNFs)。利用SEM、TEM、XRD、Raman、XPS等表征技术对该复合材料的组成和结构进行系统表征,并通过LSV、CV、恒电位电解等电化学技术对该复合材料的电催化析氢性能和稳定性进行测试分析。结果表明:RuSe 2@CNFs具有丰富的催化活性位点、良好的导电性以及充足的电解液/气体传输孔道,展现出优异的电催化性能和稳定性,在碱性电解液中产生10 mA/cm 2的催化电流密度仅需58 mV的过电位,优于大部分近期报道的Ru基催化剂。该研究为高活性析氢催化剂的设计合成提供了新的研究思路。

参考文献/References:

1 ] 李帅帅 , 汪星 , 李敏 , . 三维自支撑 Ni 2P纳米片阵列的制备及析氢性能[J. 浙江理工大学学报(自然科学版), 2020, 43(1): 32-38.

2 Zang Y, Yang B P, Li A, et al. Tuning interfacial active sites over porous Mo2N supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytesJ. ACS Applied Materials & Interfaces, 2021, 13(35): 41573-41583.

3 Nithya V D. Recent advances in CoSe2 electrocatalysts for hydrogen evolution reaction J . International Journal of Hydrogen Energy, 2021, 46(73): 36080 - 36102.

4 ] 韦悦 , 王晟 , 纪律律 . 硫化镍复合碳纳米纤维的制备及其电催化析氢性能[ J/OL . 现代纺织技术 , 2021, 5: 35 - 43. 2021 - 11 - 24 .

5 Ren Y X, Zhu S L, Liang Y Q, et al. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction J . Journal of Materials Science & Technology, 2021, 95: 70 - 77.

6 Zhang Z, Jiang C, Li P, et al. Benchmarking phases of ruthenium dichalcogenides for electrocatalysis of hydrogen evolution: theoretical and experimental insights J . Small, 2021, 17(13): 2007333.

7 Guo S H, Zhang Y Y, Tang S W, et al. Tuning interlayer spacing of MoS2 for enhanced hydrogen evolution reaction J . Journal of Alloys and Compounds, 2021, 864: 158581.

8 Pu X F, Qian J M, Li J F, et al. Adjusting the electronic structure of WS2 nanosheets by iron doping to promote hydrogen evolution reaction J . FlatChem, 2021, 29: 100278.

9 Ye J, Zang Y P, Wang Q Y, et al. Nitrogen doped FeS 2 nanoparticles for efficient and stable hydrogen evolution reactionJ. Journal of Energy Chemistry, 2021, 56: 283-289.

10 Xie W J, Liu K, Shi G D, et al. CoS 2 nanowires supported graphdiyne for highly efficient hydrogen evolution reactionJ. Journal of Energy Chemistry, 2021, 60: 272-278.

undefined

相似文献/References:

[1]王敏超,熊杰.聚酰亚胺纳米纤维膜的制备和力学性能研究[J].浙江理工大学学报,2014,31-32(自科6):617.
 WANG Min chao,XIONG Jie.Study on Preparation and Mechanical Properties of Polyimide Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科四):617.
[2]张洁,张海涛,邢同海,等.超声处理对聚乳酸/丝素蛋白复合纳米纤维膜孔径的影响[J].浙江理工大学学报,2015,33-34(自科6):771.
 ZHANG Jie,ZHANG Hai tao,XING Tong hai,et al.Effects of Ultrasonic Treatment on Pore Size of Polylactic Acid /Silk Fibroin Composite Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科四):771.
[3]高强,童宁军,鲍纬,等.γ-Fe-2O-3@C柔性复合纳米纤维的制备及结构性能[J].浙江理工大学学报,2016,35-36(自科3):351.
 GAO Qiang,TONG Ningjun,BAO Wei,et al.Preparation, Structural Properties of Flexible γ Fe 2O 3@C Composite Nanofibers[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科四):351.
[4]张立,刘涛,张丽香,等.PEO/SA生物活性玻璃支架的制备和生物活性研究[J].浙江理工大学学报,2018,39-40(自科3):299.
 ZHANG Li,LIU Tao,ZHANG Lixiang,et al.Preparation and bioactivity of bioactive glass scaffold based on PEO/SA[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科四):299.
[5]訾园兴,刘涛,陈颖睿,等.SF/SA/HBG纤维支架材料的构建及体外生物矿化[J].浙江理工大学学报,2019,41-42(自科四):427.
 ZI Yuanxing,LIU Tao,CHEN Yingrui,et al.Construction of SF/SA/HBG fiber scaffold materials and in vitro biomineralization[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科四):427.
[6]康静,骆菁菁,熊杰.氧化锆@生物活性玻璃/碳纳米纤维复合膜的制备及其性能[J].浙江理工大学学报,2020,43-44(自科五):609.
 KANG Jing,LUO Jingjing,XIONG Jie.Preparation and properties of zirconia@bioactive glass/carbon nanofiber membranes[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科四):609.
[7]郑洁,刘涛,丁新波,等.SF/GO纳米纤维复合支架的制备及体外生物活性[J].浙江理工大学学报,2022,47-48(自科二):147.
 ZHENG Jie,LIU Tao,DING Xinbo,et al.Preparation and in vitro biological activity of SF/GO nanofiber composite scaffold[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):147.
[8]王莉,刘涛,丁新波,等.丝素-壳聚糖/聚氧化乙烯双层纳米纤维膜制备及其生物活性[J].浙江理工大学学报,2022,47-48(自科四):474.
 WANG Li,LIU Tao,DING Xinbo,et al.Preparation of silk fibroin chitosan/polyvinyl oxide  bilayer nanofiber membrane and its bioactivity[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):474.

备注/Memo

备注/Memo:
收稿日期:2021-11-25
网络出版日期:2022-03-21
基金项目:浙江省自然科学基金项目(LQ20B030001);中国博士后科学基金(2021M702305)
作者简介:韦悦(1997-),女,湖北枣阳人,硕士研究生,主要从事电催化材料方面的研究
通信作者:纪律律,E-mail:llji@zstu.edu.cn
更新日期/Last Update: 2022-09-06