[ 1 ] Markowitz H M. Portfolio selection [ J ] . The Journal of Finance, 1952, 7(1): 77 - 91. [2]Chopra V K, Ziemba W T. The effect of errors in means, variances, and covariances on optimal portfoliochoice[J]. The Journal of Portfolio Management, 1993, 19(2): 6-11. [3]Goldfarb D, Iyengar G. Robust portfolio selection problems[J]. Mathematics of Operations Research, 2003, 28(1): 1-38. [4]Scherer B. Can robust portfolio optimization help to build better portfolios[J]. Journal of Asset Management, 2007, 7(6): 374-387. [5]Cui X T, Zhu S S, Li D, et al. Mean-variance portfolio optimization with parameter sensitivity control[J]. Optimization Methods and Software, 2016, 31(4): 755-774. [6]Bai Y Q, Wei Y D, Li Q. An optimal trade-off model for portfolio selection with sensitivity of parameters[J]. Journal of Industrial & Management Optimization, 2017, 13(2): 947-965. [7]Peng J M, Zhu T, Luo H Z, et al. Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting[J]. Computational Optimization and Applications, 2015, 60(1): 171-198. [8]Parrilo P A. Semidefinite programming relaxations for semialgebraic problems[J]. Mathematical Programming, 2003, 96(2): 293-320. [9]Anstreicher K M. Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming[J]. Journal of Global Optimization, 2009, 43(2): 471-484. [10]Zheng X J, Sun X L, Li D. Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations[J]. Journal of Global Optimization, 2011, 50(4): 695-712.
[1]王琳,洪陈春,罗和治.带参数敏感度的最优权衡投资组合问题的半定规划松弛[J].浙江理工大学学报,2024,51-52(自科六):861.
WANG Lin,HONG Chenchun,LUO Hezhi.Semi definite programming relaxation for optimal trade off portfolio selection with sensitivity of parameters[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):861.