[
1
]
Arnol
’
d V I, Il
’
Yashenko Y S. Ordinary differential equations
[
M
]
. Berlin: Springer-Verlag, 1988: 54-56.
[2]张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1985. [3]Algaba A, García C, Gin J. Analytic integrability of some examples of degenerate planar vector fields[J]. Acta Applicandae Mathematicae, 2016, 141(1): 1-15. [4]Algaba A, Freire E, Gamero E, et al. Quasi-homogeneous normal forms[J]. Journal of Computational and Applied Mathematics, 2003, 150(1): 193-216. [5]Algaba A, Freire E, Gamero E, et al. Quasi-homogeneous normal forms for null linear part[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 2003, 10(1/2/3): 247-261. [6]Algaba A, Freire E, Gamero E, et al. An algorithm for computing quasi-homogeneous formal normal forms under equivalence[J]. Acta Applicandae Mathematicae, 2004, 80(3): 335-359. [7]García B, Llibre J, Lombardero A, et al. An algorithm for providing the normal forms of spatial quasi-homogeneous polynomial differential systems[J]. Journal of Symbolic Computation, 2019, 95: 1-25. [8]Algaba A, Gamero E, García C. The integrability problem for a class of planar systems[J]. Nonlinearity,2009, 22(2): 395-420. [9]Algaba A, García C, Gin J. Analytic integrability for some degenerate planar vector fields[J]. Journal of Differential Equations, 2014, 257(2): 549-565. [10]张晶, 黄土森. 一类退化非线性微分方程的正规形计算[J]. 浙江理工大学学报(自然科学版), 2017, 37(6): 866-873.
[1]郭春,黄土森.坐标变换下平面解析系统单值轨道的不变性[J].浙江理工大学学报,2023,49-50(自科六):775.
GUO Chun,HUANG Tusen.Invariance of monodromic orbits of planar analytic system under coordinate transformation[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科二):775.