|本期目录/Table of Contents|

[1]邱敏,程秀俊.诺伊曼边界条件下分数阶次扩散方程的紧差分格式[J].浙江理工大学学报,2021,45-46(自科二):234-241.
 QIU Min,CHENG Xiujun.A compact difference scheme for fractional subdiffusion equations with Neumann boundary conditions[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科二):234-241.
点击复制

诺伊曼边界条件下分数阶次扩散方程的紧差分格式()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第45-46卷
期数:
2021年自科第二期
页码:
234-241
栏目:
出版日期:
2021-03-10

文章信息/Info

Title:
A compact difference scheme for fractional subdiffusion equations with Neumann boundary conditions
文章编号:
1673-3851 (2021) 03-0234-08
作者:
邱敏程秀俊
浙江理工大学理学院,杭州 310018
Author(s):
QIU Min CHENG Xiujun
School of Science, Zhejiang Sci-Tech university, Hangzhou 310018, China
关键词:
诺伊曼边界条件分数阶次扩散方程紧差分格式Caputo分数阶导数
分类号:
O242-2
文献标志码:
A
摘要:
对于诺伊曼边界条件下时间分数阶次扩散方程,提出了紧差分格式,并用该格式数值求解方程。首先,由于该方程在时间为0处解的不光滑性,因此使用非一致网格上的L1格式对时间方向进行离散,一致网格上的紧差分格式对空间方向进行离散,建立紧差分格式;其次,通过离散的能量方法,给出该格式在二范数意义下的收敛性分析;最后,通过Matlab进行数值模拟,验证该格式的有效性。该结果进一步地丰富了分数阶方程的数值算法。

参考文献/References:

[1] Ditlevsen P D. Observation of αstable noise induced millennial climate changes from an icecore record[J]. Geophysical Research Letters, 1999, 26(10):1441-1444.
[2] Humphries N E, Weimerskirch H, Queiroz N, et al. Foraging success of biological Lévy flights recorded in situ[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19): 7169-7174.
[3] Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusionwave system[J].Applied Numerical Mathematics,2006,56(2):193-209.
[4] Gao G H, Sun Z Z, Zhang H W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[J]. Journal of Computational Physics, 2014,259:33-50.
[5] Alikhanov A. A new difference scheme for the time fractional diffusion equation[J].Journal of Computational Physics,2015,280:424-438.
[6] Ren J C, Sun Z Z. Numerical algorithm with high spatial accuracy for the fractional diffusionwave equation with Neumann boundary conditions[J]. Journal of Scientific Computing, 2013, 56(2):381-408.
[7] Cao J X, Li C P, Chen Y Q. Compact difference method for solving the fractional reactionsubdiffusion equation with Neumann boundary value condition[J]. International Journal of Computer Mathematics, 2015,92(1):167-180.
[8] Vong S, Lyu P, Wang Z B. A compact difference scheme for fractional subdiffusion equations with the spatially variable coefficient under Neumann boundary conditions[J]. Journal of Scientific Computing, 2016, 66(2):725-739.
[9] Stynes M, O′Riordan E, Gracia J L.Error analysis of a finite difference method on graded meshes for a timefractional diffusion equation[J]. SIAM Journal on Numerical Analysis, 2017,55(2):1057-1079.
[10] Kopteva N. Error analysis of the L1 method on graded and uniform meshes for a fractionalderivative problem in two and three dimensions[J]. Mathematics of Computation, 2019, 88(319):2135-2155.

备注/Memo

备注/Memo:
收稿日期:2020-10-22
网络出版日期:2021-02-03
基金项目:国家自然科学基金项目(11901527);浙江理工大学科研启动基金(19062116-Y)
作者简介:邱敏(1998-),女,重庆开州人,本科生,主要从事微分方程数值解方面的研究
通信作者:程秀俊,E-mail:xiujuncheng@zstu.edu.cn
更新日期/Last Update: 2021-03-23