|本期目录/Table of Contents|

[1]许小雪,王根娣.伸缩不变Cassini度量的精确不等式[J].浙江理工大学学报,2019,41-42(自科六):829-834.
 XU Xiaoxue,WANG Gendi.Sharp inequalities for the scale invariant Cassinian metric[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):829-834.
点击复制

伸缩不变Cassini度量的精确不等式()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第41-42卷
期数:
2019年自科六期
页码:
829-834
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Sharp inequalities for the scale invariant Cassinian metric
文章编号:
1673-3851 (2019) 11-0829-06
作者:
许小雪王根娣
浙江理工大学理学院,杭州 310018
Author(s):
XU Xiaoxue WANG Gendi
School of Sciences, Zhejiang SciTech University, Hangzhou 310018, China
关键词:
伸缩不变Cassini度量双曲型度量M-bius变换
分类号:
O174-5
文献标志码:
A
摘要:
研究了伸缩不变Cassini度量与一些双曲型度量的精确比较关系,还证明了伸缩不变Cassini度量在单位球映到自身或半空间映到自身的Mbius变换下的精确偏差不等式。

参考文献/References:

[1]Ibragimov Z. A scaleinvariant Cassinian metric[J]. The Journal of Analysis, 2016, 24(1): 111-129.
[2] Mohapatra M R, Sahoo S K. Mapping properties of a scale invariant Cassinian metric and a Gromov hyperbolic metric[J]. Bulletin of the Australian Mathematical Society, 2018, 97(1): 141-152.
[3] Wang G D, Xu X X, Vuorinen M. Remarks on the scale invariant Cassinian metric. (2019-03-21)[2019-06-26]. https://arxiv.org/abs/1903-09099.
[4] Mohapatra M R, Sahoo S K. A Gromov hyperbolic metric vs the hyperbolic and other related metrics[J]. Computational Methods and Function Theory, 2018, 18(3): 473-493.
[5] Beardon A F. The geometry of discrete groups[M]. New York: SpringerVerlag, 1983.
[6] Seittenranta P. Mbiusinvariant metrics[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1999, 125(3): 511-533.
[7] Beardon A F. The Apollonian metric of a domain in Rn[M]//Quasiconformal Mappings and Analysis. New York, NY: Springer New York, 1998: 91-108.
[8] Vuorinen M. Conformal Geometry and Quasiregular Mappings[M]. Berlin: Springer, 1988.
[9] Hst P, Lindén H. Isometries of the halfApollonian metric[J]. Complex Variables, Theory and Application: an International Journal, 2004, 49(6): 405-415.
[10] Ibragimov Z. The Cassinian metric of a domain in Rn[J]. Uzbekskiǐ Matematicheskiǐ Zhurnal, 2009(1): 53-67.

相似文献/References:

[1]贾改莉,张孝惠.三角比度量的界和比较不等式[J].浙江理工大学学报,2020,43-44(自科六):858.
 JIA Gaili,ZHANG Xiaohui.Bounds and comparison inequalities for  the triangular ratio metric[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科六):858.

备注/Memo

备注/Memo:
?Received date:收稿日期2019-06-26
Published Online:2019-09-02
Fund item:基金项目This research is supported by National Nature Science Foundation of China (NNSFC) (Grant No.11601485) and Science Foundation of Zhejiang SciTech University (ZSTU) (Grant No.16062023Y).
Introduction of the first author:XU Xiaoxue(1994-),female,Anyang,Henan,postgraduate,research interests:complex analysis.
Corresponding author:作者简介WANG Gendi,E-mail:gendi.wang@zstu.edu.cn
更新日期/Last Update: 2019-11-25