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Sharp inequalities for the scale invariant Cassinian metric
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Abstract: In this paper, the authors study sharp inequalities between the scale invariant
Cassinian metric and some hyperbolic type metrics. They also prove sharp distortion inequalities of
the scale invariant Cassinian metric under Mébius transformations from the unit ball onto itself or
from the upper half space onto itself.
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0 Introduction

Due to Liouville’s theorem, in the higher dimensional Euclidean spaces the hyperbolic metric can only
be defined in balls and half spaces. As generalizations of the hyperbolic metric, hyperbolic type metrics
defined in general domains in the higher dimensional Euclidean spaces play important roles in the study of
geometric function theory. Compared with the hyperbolic metric, they have the advantages of being easy to
calculate and estimate. The comparison between hyperbolic type metrics and the distortion properties of
these metrics under Mobius transformations are two main themes of this research.

Recently, the scale invariant Cassinian metric was introduced by Ibragimov in [ 1]. Some basic
properties and distortion inequalities of the scale invariant Cassinian metric under Mobius transformations
were investigated in [1-3]. In [1, 4], the authors studied the comparison between the scale invariant
Cassinian metric and some hyperbolic type metrics, while some statements about the sharpness of
comparison are missing.

In this paper, we continue the research of the scale invariant Cassinian metric. We study sharp

inequalities between the scale invariant Cassinian metric and the absolute ratio metric, the half-Apollonian
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metric, the Apollonian metric or the Cassinian metric, in the sense that there exists a domain such that the
equality holds for some pair of points in the domain. We also prove sharp distortion inequalities of the scale

invariant Cassinian metric under some families of M6bius transformations.
1 Preliminaries

In this section, we recall the definitions of the hyperbolic metric and some hyperbolic type metrics.

For a domain D SR" and x ,y € D, the scale invariant Cassinian metric is defined by

~ C =Y
z-D(x,y):log(lJrSUp | = | )
el =pllp =yl

The hyperbolic metrics pp. and p . of the unit ball B ={z € R"; | 2 | << 1} and of the upper half space
H"={(x s »x,) € R":x, > 0} are defined as follows. By [ 5, p.40] we have forx,y € B",

Shpgn(xvy): |f‘7y| : ,
2 =Tz Ha—=Ty ™
and by [5. p.35] forx,y € H",
xr—y |*
Ch‘OHn(AT ’y) :1_’_%

It is well known that the hyperbolic metric provides a powerful tool in complex analysis and geometric
function theory, and many theorems have more natural explanations under the hyperbolic metric than the
Euclidean metric.

The following lemma shows the relation between the scale invariant Cassinian metric and the
hyperbolic metric.

Lemma1l [1, Theorem 3. 8; 3, Theorem 4. 1, Theorem 4 4] Let D=B" orD=H". For allx,y €
D, we have
%pn(x,y) < tp(a,y) < pplasy).
Both inequalities are sharp.

Let D be an open subset of R” =R" |J {oc} with card dD == 2. The absolute ratio metric §, is defined
as (see [6])

Sp(xsy) =log(l1+ sup | a,x.b,y|)

asbedD

for allx .y € D, where
la—b|lx—y|

|[oo—b | _

with

la—x |[b—y] |oo—a |

1

| asx b,y |=

is the absolute ratio.
Let D be a proper open subset of R" and for all x ,y € D, the Apollonian metric ap is defined as

ap(x,y) = sup log | a,x.y.,b |.
a.beID

Note that ap is a pseudo-metric in D. It is, in fact, a metric if and only if R"\D is not contained in an
(n — 1)-dimensional sphere in R", see [ 7, Theorem 1. 1].

The absolute ratio metric and the Apollonian metric coincide with the hyperbolic metric if D is the unit
ball B” or the upper half space H", see [ 8, Lemma 8 39] and [ 7, Example 3. 2, Lemma 3. 1]. It is easy to
see that both the absolute ratio metric and the Apollonian metric are Mébius invariant., They are useful in
the study of uniform domains.

In [9]., Hasté and Lindén gave another form of the Apollonian metric:

an(r,y):suplogMJrsuplogM [@D)

a€aD | a—x | e | b— vy |
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Using only one term in the right-hand side of (1), Héastoé defined the half-Apollonian metric as
follows.
Let D be a proper open subset of R" and for all z,y € D, the half-Apollonian metric y is defined as
(see [9])
log M .
ly—»|
Note that 7, is also a pseudo-metric in D, and a proper metric whenever R"\D is not a subset of a
hyperplane (see [9, Theorem 1 27]). By [7, Lemma 2 2 (i) ],
ap(x,y) =y9p(x,y)

7o (x,y) = sup
pEID

where D =R"\{{,o0} for any { € R".
The half-Apollonian metric is bilipschitz equivalent to the Apollonian metric.
Lemma 2 [9, Theorem 2 1] Let D € R" be a domain. Then the double inequality

1
?011)(1‘93)) < 7]1)(1'93/) gau(l‘,y)

holds for all x .y € D. Both inequalities are sharp.

Let D be a proper subdomain of R" and for all z,y € D, the Cassinian metric ¢, is defined as (see [107])

cp(xsy) =sup x|
e vew [z —plly—pl

The Cassinian metric and the hyperbolic metric in the unit ball are related by [ 11, Corollary 3. 37;
1

C Bn (I ,y) > 2

(OBn (l 93/).

2 The r -metric and some hyperbolic type metrics

In this section, we compare the rp -metric with the absolute ratio metric 8, the half-Apollonian

metric yp » the Apollonian metric ap, and the Cassinian metric ¢p, respectively. In particular, the sharp

inequalities between the 7, -metric and these hyperbolic type metrics are studied.

Theorem 1 Let D S R" be a domain. Then the double inequality
1 .
Ia[)(xvy)<‘[’D(Iyy)<6[)(1'yy) 2)

holds for all x ,y € D. Both inequalities are the best possible.
Proof. The double inequality and the sharpness of the right —hand side of (2) are the facts of [4,
Theorem 5. 2.

For the sharpness of the left-hand side of inequalities (2), we consider the domain D =B", thendp, =
1
ppn. By Lemma 1, the constant T is the best possible.

This completes the proof.[]
Theorem 2 Let D € R" be a domain with 9D # (/J. Then the double inequality

1 - 1
?qp(x,y)érp(l‘,y)<?779(1,y)+log3 (3

holds for all x ,y € D. The constant % in the left-hand side and the constant log3 in the right-hand side of

the inequalities are the best possible.

Proof. The double inequality is the fact of [1, Theorem 3. 5.

1
For the sharpness of the constant 5 in the left-hand side and the sharpness of the constant log3 in the
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right-hand side of inequalities (3), we consider the domain D =R"\{e, }. Let y =—x =te, withz > 1. By
[2, Proposition 3. 1], we have

t+1
t—1

ooy = 1 (HL) d g (ay) = 1
p(x,y) = log W and gp (x,y) = log

We further obtain

lim ;D(I’y): im -1 L
t—1+4 77])(1‘,:)}) =1+ 2 2
log<1+7l>
and
[~ 1 L 20 +tP—1 [Jt—1]|
}Lm<rp(x,y)*?vn(x,y))—lhmlo — tJrlJlogS

This completes the proof.[]
Theorem 3 Let D S R” be a domain. Then the double inequality

1 - 1
Zao(x»y)<z'p(x,y)<?ap(1‘,y)—0—log3 4)

holds for all x ,y € D. The constant % in the left-hand side and the constant log3 in the right-hand side of

the inequalities are the best possible.

Proof. The double inequality follows easily from Theorem 2 and Lemma 2.

1
For the sharpness of the constant T in the left-hand side of inequalities (4), we consider the domain

1. .
D =H", thenay, =ppu.. By Lemma 1, the constant T is the best possible.

For the sharpness of the constant log3 in the right-hand side of inequalities (4), we consider the
domain D =R"\{e,,oo}, thenap = np. By Theorem 2, the constant log3 is the best possible.

This completes the proof.[]

Theorem 4 For every domain D € R” the inequality

p(xsy) =log(l+rep(x,y))

holds for all x ,y € D, where r =min{d (2 ).,d(y)} andd (x) is the distance from x to the boundary of D.
The inequality is sharp.

Proof. Let p € dD such that

| 2 —y |
p(x,y) = .
T e = T p—y |
Then
N =y
T[)(Isy):10g<1+ | = | )
lx—pllp—ul

=log(14+VTx—p[lp—ylenla.y))
= log(1+rep(xay)).
For the sharpness, we consider the punctured space D, =R"\{p}. Let x,y € D, with | x — p |=
| vy —p |. It is clear that

| x— v |

w0 (ray) =log(1+ o |)=10g<1+| y—p lepaay).

Hence the inequality is sharp.[ ]
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3  The r -metric and Mobius transformations

In [2, Proposition 3. 1], Mohapatra and Sahoo gave a formula for the 7 5, —-metric in the special case
when x =ty (x,y € B") witht € R\{0}. In [3], the authors studied the geometry of the 7, -metric and
obtained formulas for this metric in more special cases, some of which will be used in the proof of the
theorems in this section. They also proved that 7, -metric is not changed by more than a factor 2 under
Mobius transformations, see [ 3, Theorem 5. 1].

In [1], Ibragimov showed the following distortion inequalities of 7 . -metric.

Theorem 5 [1, Theorem 4. 2] Let f be a Mobius transformation of B”. Then
1- 5 - ~ 5
5T (x,y) —log T <z (f (), f(y)) <27z (x,y) +log T
forallx,y € B”".
The following theorem improves the result in Theorem 5 when f is an inversion in some sphere

S" ' (a* ,r) with center a * and radius r.

Theorem 6 Fora € B"\{0}. Leta” =‘ 4 B r=+|a”* |*—1and f(2)=a"* +r2%be the
a |’ z—a” |’
inversion in S" ' (a* ,r). Then f(B") =B" and for allz,y € B",
1- - ~
Ez’;;"(x,y)gz’m(f(x),f(y))<Zz’m(1,y).

Both inequalities are the best possible.

Proof. The double inequality is clear by [ 3, Theorem 5. 1].

1
For the sharpness of the right-hand side of the inequalities, let a = te, with > <t < 1. Then r =

1—1¢°

. Puttingx =(1 —t)e, and y =— (1 —t)e,, we have
. 2t —1 . _ 1
f(‘r)iil—LJrzzel andf(y)—ilJrl_[zel.
By [2, Proposition 3. 1], we have
20— (1 +0)
- X log<1Jr )
T (S ) Q22— —t+tH A+t —1)
lim = = lim =2.
=l e (T 5y) 1 22—
log<1—|— )
V(2 —1)

Thus the constant 2 is attained. The sharpness of the left —hand side of the inequalities can be seen by
L . 1. .
considering the inverse of f and hence the constant 5 s also the best possible.

This completes the proof.[ ]

(z—a)

Theorem 7 Let f(2)=a—+r’ be the inversion in S"' (a ,r) with Ima =0. Then f(H")=H"

| 2 —a |’
and for allx,y € H",

1 - ~ -
5T (xoy) <zt () f[(y)) <2t (x,y).

Both inequalities are the best possible.
Proof. The double inequality is clear by [3, Theorem 5. 1].
For the sharpness of the left-hand side of the inequalities, leta =0 and » =1. Put x =e¢, +te, and y =

e Jr%ez with 0 < ¢t <<+/2 — 1, then
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2

. t . t I3
f(x):1+tzel—|—1+tzeg and‘f(y):1+tzel+1+t2e2.
By [3, Lemma 3. 11 (1), Lemma 3. 12], we have
11—
I 1 ( )
T (S LG BN 1
lim ——————" =1 =5
t—0+

— m
T (T5y) 10" 10g<1_~_ift)
13

Thus the constant - i attained. The sharpness of the right—hand side of the inequalities can be seen by

considering the inverse of f and hence the constant 2 is also the best possible.

This completes the proof.[]
4 Concluding Remark

There are several hyperbolic type metrics which preserve some characterizations of the hyperbolic
metric and hence are useful in the geometric function theory. Different hyperbolic type metrics have their
own interests in the applications to specific problems. There are close relationships between hyperbolic
type metrics as the results of the present paper show. The sharp inequalities obtained in this paper are

expected to be helpful in the study of the metric ball inclusion problems.
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