[1] 孙志忠. 偏微分方程数值解法 [M]. 2版. 北京: 科学出版社, 2012:143-267.
[2] 刘相国, 郝江锋. 一类双曲型方程的有限差分法[J]. 宜宾学院学报, 2011(6):14-17.
[3] 刘付军, 龚东, 王高放. 一类线性双曲型偏微分方程的有限差分格式求解[J]. 河南工程学院学报(自然科学版), 2014, 26(3):73-76.
[4] Britt S, Turkel E, Tsynkov S. A high order compact time/space finite difference scheme for the wave equation with variable speed of sound[J]. Journal of Scientific Computing, 2018, 76(2):777-811.
[5] 曹志浩. 数值线性代数[M]. 上海: 复旦大学出版社, 1996:85-86.
[6] Sun Z. Compact difference schemes for heat equation with Neumann boundary conditions[J]. Numerical Methods for Partial Differential Equations, 2013, 29(5):1459-1486.
[7] Zhang Q, Mei M, Zhang C. Higherorder linearized multistep finite difference methods for nonFickian delay reactiondiffusion equations[J]. International Journal of Numerical Analysis & Modeling, 2017, 14(1):1-19.[8] 胡建伟,汤怀民. 微分方程数值方法[M].北京:科学出版社, 1999:176-186.
[9] Thomas J W. Numerical partial differential equations: Finite difference methods[J].Texts in Applied Mathematics, 2010,33(6):531-531.
[1]邱敏,程秀俊.诺伊曼边界条件下分数阶次扩散方程的紧差分格式[J].浙江理工大学学报,2021,45-46(自科二):234.
QIU Min,CHENG Xiujun.A compact difference scheme for fractional subdiffusion equations with Neumann boundary conditions[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科二):234.