|本期目录/Table of Contents|

[1]焦仁兵,裘松良,葛耿韬.广义( p,q )椭圆积分的单调性和凹凸性[J].浙江理工大学学报,2018,39-40(自科6):765-769.
 JIAO Renbing,QIU Songliang,GE Gengtao.Monotonicity and convexity properties of  the generalized ( p,q )elliptic integrals[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):765-769.
点击复制

广义( p,q )椭圆积分的单调性和凹凸性()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科6期
页码:
765-769
栏目:
出版日期:
2018-11-10

文章信息/Info

Title:
Monotonicity and convexity properties of  the generalized ( p,q )elliptic integrals
文章编号:
1673-3851 (2018) 11-0765-05
作者:
焦仁兵裘松良葛耿韬
浙江理工大学理学院,杭州 310018
Author(s):
JIAO Renbing QIU Songliang GE Gengtao
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
广义( pq)三角函数广义(pq)  椭圆积分单调性凹凸性
分类号:
O174.6
文献标志码:
A
摘要:
In this paper, the authors obtain several monotonicity and convexity  properties of the generalized ( p,q )elliptic integrals K p,q ( r ) and  E p,q ( r ) for  p,q∈(1,∞) and  r ∈(0,1), by studying the analytic properties of certain combinations in terms of  K p,q ( r ), E p,q ( r ) and some elementary functions.

参考文献/References:

[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables[M]. New York: Dover Publications,1966:556-607.
[2] Drábek P, Manrásevich R. On the closed solution to some pLaplacian nonhomogeneous eigenvalue problems[J]. Differential Integral Equations,1999,12(6):733-788.
[3] Takeuchi S. Generalized Jacobian elliptic functions and their application to bifurcation problems associates with pLaplacian[J]. Journal of Mathematical Analysis and Applications,2012,385(1):24-35.
[4] Takeuchi S. Legendretype relations for generalized complete elliptic integrals[J]. Journal of Classical Analysis,2016,9(1):35-42.
[5] Kamiya T, Takeuchi S. Complete (p,q)elliptic integrals with application to a family of means[J]. Journal of Classical Analysis,2017,10(1):15-25.
[6] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons,1997:48-73.
[7] Borwein J M, Borwein P B. Pi and the AGM[M]. New York: A WileyInterscience Publication,1987:1-32.
[8] Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals[J]. Journal of Computational and Applied Mathematics,2004,172(2):289-312.
[9] Anderson G D, Vamanamurthy M K, Vuorinen M. Functional inequalities for complete elliptic integrals and their ratios[J]. SIAM Journal on Mathematical Analysis,2012,21(2):536-549.
[10] Qiu S L, Vamanamurthy M K, Vuorinen M. Some inequalities for the growth of elliptic integrals[J]. SIAM Journal on Mathematical Analysis,2006,29(5):1224-1237.

备注/Memo

备注/Memo:
Received date: 2018-05-29
Published Online: 2018-09-04
Fund item: This research is supported by the NSF of P. R. China (Grant No.11771400)
Introduction of the first anthor: JIAO Renbing(1994-), male, Anqing, Anhui, postgraduate, research interests: quasiconformal theory, special functions, Ramanujans modular equations.
Corresponding author: QIU Songliang, E-mail: sl_qiu@zstu.edu.cn
更新日期/Last Update: 2018-11-14