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Monotonicity and convexity properties of
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Abstract: In this paper. the authors obtain several monotonicity and convexity properties of the generalized (p.q)-
elliptic integrals J,.,(r) and &, (r) for p,q& (1,°°) and & (0,1), by studying the analytic properties of certain
combinations in terms of #,.,(r), ¢,,(r) and some elementary functions.
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0 Introduction

For r€ (0,1), Legendre’s complete elliptic integrals of the first and second kinds are defined as

H o= H(r) = J & ndE= e = J J1— Psin’ede,
respectively, which are the special cases of the Gaussian hypergeometric functions
Fla.bscsx) = F (asbscsa) — Z} %:—' x| <1 (1)
where (a,0)=1 for a0, and (a,n) is the shifted factorial function
(asn)=ala+D(a+2)(atn—1) (2)
for n€N={k|k is a positive integer}. (See [1])
In recent years, certain generalizations of the classical trigonometric functions have attracted much

interest. For p,q€ (1,2°) and for x€[0,1], define the function

arcsin,,,x = JO (1}% )
and set
' 1 ds 2 1 1
_ o _ - = = 1 D R
Tpeq Zarceln/),q(l) ZJ(J (1 —Y? q b ( g ) v

where B is the classical beta function. The function arcsin,,,x has an inverse defined on [0,x,,/2], which
can be extended to an odd 2=, ,-periodic function, denoted by sin,,, on the set R of real numbers by

natural procedures designed to mimic the behaviour of the sine function. The function sin,,, is said to be
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the generalized (p,q)-sine function, reduces to the classical sine function when p=¢g=2, and occurs as an
eigenfunction of the Dirichlet problem for the (p,q)-Laplacian. (Cf. [2-3].)
For p.q&€ (1,°°) and for r&€ (0,1), the so-called generalized (p,qg)-elliptic integrals of the first and

second kinds are defined as

p!? dt ! dt
Ky (1) = J : . 5= J , / °
(g (1) 0 (1 —rsing ) '7V* o (1 —¢)VP (1 — eyt )
and
Thq/2 . ) 1 _ apa\1Up
Epg(r) = J/ (1 —#9sing )" ?dt = J (711 r; j dt (6)
0 0 -

respectively, which were introduced and studied recently, (Cf. [4-5].) For p = ¢ = 2, these two functions
reduce to the complete elliptic integrals #(») and €(r), respectively. It is easy to see that the generalized

(p,@-elliptic integrals have the following expressions (cf. [5]).

Jz'/,,q:Jz'p,q(r):mF(l—i,i;l—iJr%;r”J

2 P g p
"%//7.41:‘%/,041(7'):*ﬁl’vq(r/) (7>
‘]I/J,q(o):n-gq ’%llzl(l)zoo
and
T 1 1 1 1
Epg = Epg C ):ﬂF(—*»*;l_*JF*H’qJ
! pat? 2 P q P q
(,“/,,,q:é/,,,q(r):(‘E”P,(,(r/) (8

Tpeg

€ (0)= 2‘ L6, (D=1

Here and hereafter, we let v = (1 — )", Clearly, %,, (&,,) is strictly increasing (decreasing,

respectively) on (0, 1). By [4, Corollary 1. 2], these two functions satisfy the Legendre relation

s E A P )=y (DA, () :%

It is well known that the complete elliptic integrals 7 and ¢ have many applications in several fields of
mathematics as well as in physics and engineering. Numerous properties have been obtained for 4 and &
(cf., for instance, [6-10]). However, only a few basic properties of the generalized (p, g)-elliptic
integrals 4, ,and ¢, have been revealed (see [4-5, 11]). It is natural to ask whether the known properties
of J#and ¢ can been extended to 4, , and ¢,,,.

The purpose of this paper is to present several monotonicity and convexity properties of %, ,and ¢, ,
by studying the analytic properties of certain combinations defined in terms of %, ,,¢,,,and some elementary
functions, thus extending some known properties of 4 and ¢ to 4, ,and &,,,.

Throughout this paper, we always let a=1—1/p and b=a+1/q for p,q€ (1,90), y=0.577215++ be
the Euler constant, ¢ the classical psi function, and let

Rz, y)=—2r—¢(x) —¢(y)(x,y€ (0,°0)) €D)
1 Main Results

In this section, we state the main results of this paper.

Theorem 1 For p,g€ (1,90), we have the following conclusions:

a) The function f, (r) = (¢, — ;”"Jz,,,,,)/r“ is strictly increasing and convex from (0, 1) onto
(ar,.,/(20),1).

b) The function f, (r)Er/(’,)zp,(l/(‘;,,,L, is strictly decreasing from (0, 1) onto itself.
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¢) The function f; (=&, ,—r""%4,,)/("%,,) is strictly decreasing from (0, 1) onto (0, a/b).

d) The function f, (=4, ,—¢,.,)/(t94,.,) is strictly increasing from (0, 1) onto (1/(gb),1).

e) The function f;(N=(E,,—r "%, )/ (h,,,—¢E,.,) is strictly decreasing from (0, 1) onto (0,aq).

f) The function fs(HN=r""(4,,—¢,.) /"¢, is strictly decreasing from (0, 1) onto (0,1/(gh)).

Theorem 2 For p,q€ (1,90) and c€ (—°°,9°), we have the [ollowing conclusions:

a) The function g, () =7"“4,,, is decreasing (increasing) on (0, 1) if and only if c=a/b(c<<0
respectively) with g, ((0,1))=(0,x,,/2) if c=a/b.

b) The function g, (r)=r"*¢, , is increasing (decreasing) on (0, 1) if and only if ¢<<—1/(pb) (c=0,
respectively) , with g,(0,1)=(x,,/2,°°) if c<<—1/(pb).

Theorem 3 For p,q€ (1,5°) and ¢€ (—©©,29), the function &, (r)=4, ,+c logr' is increasing and
convex (decreasing) on [0, 1) if and only if ¢<Xar,.,/(20) (c=1,respectively). Moreover, if c==1, then &,
is concave on [0, 1). In particular, the function h, (r)=%, ,+logr'is strictly decreasing and concave from

(0, 1) onto (R(a,1/¢)/qsm,.,/2), so that for p.q€ (1,°°) and »€ (0,1) and R=R(a.1/q)/q,
o 1 (7 < < Tra 1
2 +10g r/ ( 2 R)r\(/p,,l(r)\ 2 +10g r/ (10)

with equality in each instance if and only if »=0.

Remark a) If p=¢=2, then Theorem 1 a) and e), and Theorem 1 ¢)—d) reduce to [ 6, Theorem 3.
21(1) & (6)] and [ 6, Exercise 3. 43 (46) &. (32)], respectively, while Theorems 2—3 reduce to [ 6,
Theorem 3.21(7) & (8)] and [6, Theorem 3.21(3)7, respectively.

b) If p=qg and a=1/p, then Theorems 1—3 give several properties of the generalized elliptic integrals
X, and &, , which were obtained in [12, Lemmas 5.2 & 5.4, Theorem 5.5(1)].

We now recall the following two lemmas needed in the proofs of our main results.

Lemma 1 ([13]) Let r,,s5,€ (—2,°0) for n€ N. Suppose that the power series

R(x) = D ra"and S(2) = D s,2" an

n=1 n=1

are both convergent for ‘x ‘ <1. If all 5,>>0 and if r,/s, is strictly increasing (decreasing) in n€ N, then
the function R/S is strictly increasing (decreasing, respectively) on (0, 1).
Lemma 2 ([5]) For p,q€ (1,°°) and r€ (0,1),
Hpoy— &

d')l/hq _ (C’T/Ml _)’/qjl/,_q d(C’L‘/)-,fl - g peq (12)
dr rr’d T odr q pr

2 Proofs of Main Results

2.1 Proof of Theorem 1
a) By (1) and (7)—(8), we have

T (N[ L) (U gen)  Cas)(L/gsn) 7, Cas) (1/qsn) o)
g =1 g = 2 {”Zzg[ (byn)n! (byn)n! ] + "22 (byn)n! r }
:np_qi (—1/pwA/qw) (@) A/qsn) | (asn—=DA/gin—11 ,
2 ,,,1[ (byn)n! (bsnin! (byn—Dm—D! ]
_ am,. (12 nla.n *(;,)7(1)17{({,71* 1)7(,,, _ arr,, ”Zb,,r"” (13)

n=1 n=0

where b,,:a7,/(n+b) and a,= (a,n) (1/q,n)/[(b,n)n!], and hence the monotonicity of f; follows.
Clearly, f,(17) =1. By (13). f,(0")=an,,/(2b).

b) Observe that ¢,,—r""%,,, is increasing on (0,1) by (13), and &,,, is decreasing on (0, 1). Since
for)=1—C&,,—7" "4,/ ,.,» the monotonicity of f, follows. The limiting values of f, are clear.

¢) It follows from (1), (7) and (13) that
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( 2 b,r" )

f1(r) =a—"——— 14)

(Sar)

n=0

Since b,/a,=1/(n-+b) is strictly decreasing in n€ NU {0}, we obtain the monotonicity of f; by Lemma 1.
The limiting values of f; are clear.
d) Since f,(r)=1—f;(), part d) follows from part c).
e) Part e) follows from parts ¢)—d).
D Clearly, fs (") =1—f,()/&,,, and hence part ) follows from part a). []
2.2 Proof of Theorem 2
a) Let fy be as in Theorem 1 ¢). Then by Lemma 2 and by differentiation,
! qg,l P/ H, = f2 () —c.
Hence by Theorem 1 ¢), g, is decreasing (increasing) on (0, 1) if and only if

c=sup f3(r)= % (¢<X inf f,(r)=0,respectively) .
0<<r<<1 0<<r<<1

b) Let fs be as in Theorem 1 ). Then by LLemma 2, we have
et gl () /6, = —Letafs (D) /p].
Hence by Theorem 1 ), g is increasing (decreasing) on (0, 1) if and only if
c<*%()$k}lplfb (r)= *%( 2—%011}£1ﬁ, (r)=0, respectively) ,

yielding the result in part b) as desired. []
2.3 Proof of Theorem 3

Let /| be as in Theorem 1 a). Then LLemma 2 and differentiation give

Fr T () = f () —e,

so that by Theorem 1 a),

B () =0(<0)&e<< inf f,(r) :aggq (c= sup f1(r)=1,respectively),
0<r<1 0<r<1

which yields the monotonicity of A;.
Next, it follows from (1) and (7) that

T LNV 4w
h () =" . 2 (A, —o)r (15)
where A, =qn,.,(a,n)(1/q,n)/[2(b,n)(n—1)!]. Since
An‘#li a
A, qn(n+b)>1,

A, is strictly increasing in n€ N. Clearly, A, =qmx,.,/(20). By [1, 6.1.47] and (4), it is easy to obtain the

limiting value A.. =1imA,=1. Hence it follows from (15) that &, is convex on (0, 1) if and only if ¢<<A,

n—>co

=qn,.,/(2b), and h, is concave on (0, 1) if c=A..=1.
The limiting value h, (0) ==,,/2, and the monotonicity and concavity properties of h,are clear. By
[1,15.3.10], we obtain the limiting value h, (17 )=R(a.1/¢)/q.

The double inequality and its equality case are clear. []
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