|本期目录/Table of Contents|

[1]周康,路秋英.带有线性饱和治疗函数的SIR-模型动力学研究[J].浙江理工大学学报,2017,37-38(自科6):874-880.
 ZHOU Kang,LU Qiuying.Research on Dynamical Behaviors of  SIR Epidemic Model with Linear Saturation Therapy Function[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科6):874-880.
点击复制

带有线性饱和治疗函数的SIR-模型动力学研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第37-38卷
期数:
2017年自科6期
页码:
874-880
栏目:
出版日期:
2017-11-10

文章信息/Info

Title:
Research on Dynamical Behaviors of  SIR Epidemic Model with Linear Saturation Therapy Function
文章编号:
1673-3851 (2017) 06-0874-07
作者:
周康路秋英
浙江理工大学理学院,杭州 310018
Author(s):
ZHOU Kang LU Qiuying
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
治疗函数SIR传染病模型后向分支基本再生数
分类号:
O193
文献标志码:
A
摘要:
推广了一类具有双线性发生率函数和饱和治疗函数的SIR传染病模型,研究了其地方性平衡点的存在性、稳定性及后向分支现象。研究表明:当基本再生数小于1时,若饱和治疗率较小,则系统发生后向分支。同时证明了系统至多存在4个平衡点。

参考文献/References:

[1] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London Series A,1927,115a:700-721.
[2] WEI J J, CUI J A. Dynamic of SIS epidemic model with the standard incidence rate and saturated treatment function[J]. International Journal of Biomathematics,2012,5(3):1-18.
[3] HU Z X, LIU S, WANG H. Backward bifurcation of an epidemic model with standard incidence rate and treatment rate[J]. Nonlinear Analysis Real World Applications,2008,9(5):2302-2312.
[4] WANG W D. Backward bifurcation of an epidemic model  with treatment[J]. Mathematical Biosciences,2006,201(1/2):58-71.
[5] ZHANG X, LIU X N. Backward bifurcation of an epidemic model with saturated treatment function[J]. Journal of Mathematical Analysis & Applications,2008,348(1):433-443.
[6] ECKALBAR J C, ECKALBAR W L. Dynamics of an epidemic model with quadratic treatment[J]. Nonlinear Analysis Real World Applications,2011,12(1):320-332.
[7] XIAO Y J, ZHANG W P, DENG G F, et al. Stability and bogdanovtakens bifurcation of an sis epidemic model with saturated treatment function[J]. Mathematical Problems in Engineering,2015,2015(1):1-14.
[8] ZHOU T T, ZHANG W P, LU Q Y. Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function[J].Applied Mathematics & Computation,2014,226(1):288-305.

相似文献/References:

[1]王青,路秋英.带有饱和发生率和线性饱和治疗函数的SIS模型的动力学研究[J].浙江理工大学学报,2018,39-40(自科5):630.
 WANG Qing,LU Qiuying.Research on dynamical behaviors of SIS epidemic model with saturation incidence and linear saturation therapy function[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):630.

备注/Memo

备注/Memo:
收稿日期: 2017-06-25
网络出版日期: 2017-10-10
基金项目: 国家自然科学基金项目(11101370);浙江理工大学“521”人才培养计划(11430132521304)
作者简介: 周康(1993-),男,江苏宿迁人,硕士研究生,主要从事常微分方程与动力系统方面的研究
通信作者: 路秋英,E-mail:qiuyinglu@163.com
更新日期/Last Update: 2017-11-16