|本期目录/Table of Contents|

[1]王飞,周培桂,马晓艳.Γ-函数的几个性质及其应用[J].浙江理工大学学报,2014,31-32(自科5):576-579.
 WANG Fei,ZHOU Pei gui,MA Xiao yan.Some Properties of Gamma Function and Its Applications[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科5):576-579.
点击复制

Γ-函数的几个性质及其应用()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第31-32卷
期数:
2014年自科5期
页码:
576-579
栏目:
(自科)数学及应用
出版日期:
2014-09-10

文章信息/Info

Title:
Some Properties of Gamma Function and Its Applications
文章编号:
1673-3851 (2014) 05-0576-04
作者:
王飞 周培桂 马晓艳
1. 浙江机电职业技术学院, 杭州 310053; 2. 浙江理工大学, a. 科技与艺术学院; b. 理学院, 杭州 310018
Author(s):
WANG Fei ZHOU Peigui MA Xiaoyan
1. Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China; 2. Zhejiang Sci-Tech University, a. College of Science and Art; b. School of Science, Hangzhou 310018, China
关键词:
精确估计 Γ 函数 单调性 拟共形映射 几何凸性
分类号:
O174
文献标志码:
A
摘要:
运用单调性l Hospital法则获得了Γ 函数的一些单调性质,根据这些性质主要获得运用几何凸性准则解决了Γ 函数的一个猜测,利用等价转化方法改进了拟共形映射中常数 B n 的精确估计。

参考文献/References:

[1] Alzer H. A characterization of Euler s constant[J]. Expositiones Mathematicae, 2013, 31(4): 385-391.
[2] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[M]. New York: Dover Publications, 1965: 253-294.
[3] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Special Function in Geometric Function Theory[M]. Elsevier B V, 2005: 621-659.
[4] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Mappings[M]. New York: John Wiley & Sons, 1997: 32-47.
[5] Klain D A, Rota G C. A continuous analogue of Sperner s theorem[J]. Communications Pure Appl Math, 1997: 205-223.
[6] Borgwardt K H. The Simplex Method, a Probabilistic Analysis[M]. New York: Springer Verlag, Berlin, 1987.
[7] Ma X Y, Chu Y M, Wang F. Monotonicity and inequalities for the generalized distortion function[J]. Acta Mathematica Scientia, 2013, 33B(6): 1759-1766.
[8] Ma X Y, Qiu S L, Zhong G H, et al. Some inequalities for the generalized linear distortion function[J]. Appl Math J Chinese Univ, 2012, 27(1): 87-93.
[9] Ma X Y, Wang M K, Zhong G H, et al. Some inequalities for the generalized distortion functions. Math Ineq Appl, 2012, 24(4): 941-954.
[10] Qiu S L, Vuorinen M. Some properties of the gamma and psi functions with applications[J]. Mathematics of Computation, 2004, 74(250): 723-742.
[11] Qi F. Bounds for the ratio of two gamma functions. Journal of Inequalities and Applications. 2010. [2014-03-05].http://downloaols.hindawi.com/journals/jia/2010/493058.pdf.
[12] Aderson G D, Qiu S L. A monotoneity property of the Gamma function[J]. Proc Amer Math Soc, 1997, 125 (11): 3355-3362.
[13] Zhang X M, Xu T G, Situ L B. Geomeric convexity of a function involving Gamma function and applications to inequality theory[J]. J Inequal Pure and Appl Math, 2007, 8(1): 1-9
[14] Batir N. Inequalities for the gamma function[J]. Archiv der Mathematik, 2008, 91(6): 554-563.
[15] 张小明, 褚玉明. 解析不等式新论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2009.
[16] Niculescu C P. Convexity according to the geometric mean[J]. Math Inequal Appl, 2000, 2(2): 155-167.

备注/Memo

备注/Memo:
收稿日期: 2014-03-05
基金项目: 国家自然科学基金资助项目(11171307);浙江省教育厅科研项目基金(Y201328799);浙江机电职业技术学院科研项目(A027114018)
作者简介: 王飞(1985-),男,陕西渭南人,硕士,助教,主要从事Ramanujan模方程及特殊函数研究
更新日期/Last Update: 2014-09-26