|本期目录/Table of Contents|

[1]彭颖,陈宇鑫,刘丽燕,等.数字孪生技术在建筑节能减碳领域的发展与应用综述[J].浙江理工大学学报,2026,55-56(自科一):93-104.
 PENG Ying,CHEN Yuxin,LIU Liyan,et al.A review on the development and application of digital twin technology in building energy conservation and carbon reduction[J].Journal of Zhejiang Sci-Tech University,2026,55-56(自科一):93-104.
点击复制

数字孪生技术在建筑节能减碳领域的发展与应用综述()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
55-56
期数:
2026年自科第一期
页码:
93-104
栏目:
出版日期:
2026-01-10

文章信息/Info

Title:
A review on the development and application of digital twin technology in building energy conservation and carbon reduction
文章编号:
1673-3851(2026) 01-0093-12
作者:
彭颖 陈宇鑫 刘丽燕 蔡沈若雯 兰天
1. 莆田学院土木工程学院 ,福建莆田 351100;2. 青岛柠檬树网络科技有限公司 ,青岛 266000
Author(s):
PENG Ying CHEN Yuxin LIU Liyan CAI-SHEN Ruowen LAN Tian
1. Institute of Civil Engineering, Putian College, Putian 351100, China; 2. Qingdao Lemon Tree Network Technology Co., Ltd., Qingdao 266000, China
关键词:
数字孪生建筑节能减碳 碳管理智慧城市人工智能
分类号:
TU201
文献标志码:
A
摘要:
在建筑行业数字化转型与低碳发展趋势下 ,数字孪生技术融合大数据、物联网和 AI等技术 ,构建虚拟模型实现对物理世界的动态模拟与优化 ,成为建筑节能减碳领域的研究热点 。对数字孪生技术在建筑节能减碳领域的发展历程、技术基础、核心算法架构和应用场景等进行了综述 , 结合典型案例与文献分析 , 阐述了其在能耗模拟、设备维护、碳排放追踪等场景中的优势与局限 , 为建筑节能减碳行业的数字化转型以及相关研究者提供参考。数字孪生技术通过数据协同、智能融合与场景拓展 ,构建精确模型进行能耗预测和分析 ,提供智能决策支持 ,优化能源管理策略 , 实现设备故障预诊断和预测性维护等 , 可持续为建筑节能减碳注入创新动能并突破应用瓶颈 ,但当前该技术面临多源数据融合难、模型实时性不足、标准化缺失等挑战;未来 , 随着数字孪生中台构建、AI模型深化及向城市级能源网络拓展 ,其将成为实现建筑“双碳”目标的关键技术 ,助力智能低碳城市建设。

参考文献/References:

[1] 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[A/OL]. (2021-03-13)[2025-03-28]. http://www.xinhuanet.com/2021-03/13/c_1127205564.htm.
[2] 金歆, 刘军国, 喻思南, 等. 携手迈进更加美好的“数字未来”[N]. 人民日报, 2024-11-21(002).
[3] 马凌. 基于数字孪生技术的建筑施工资源调度优化研究[J]. 建材与装饰, 2024, 20(24): 82-84.
[4] 张振刚, 卢玉舒, 罗泰晔. 数字孪生拓展制造企业价值场景的模式和机制: 基于双案例的探索性研究[J]. 科研管理, 2025, 46(1): 54-62.
[5] 戴成元, 梁邦勋, 程可, 等. 基于数字孪生的装配式建筑施工过程动态调度研究[J]. 建筑科学与工程学报, 2024, 41(4): 83-94.
[6] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768.
[7] 刘刚, 马智亮, 曾勃, 等. 数字孪生技术在建筑工程中的应用研究综述[J]. 土木建筑工程信息技术, 2023, 15(6): 1-8.
[8] 牛梓航. 考虑节能的公共建筑装修装饰设计施工一体化研究[J]. 中国建筑金属结构, 2025, 24(6): 121-123.
[9] 金伟. 基于BIM技术的老城更新中的建筑节能改造研究[J]. 徐州工程学院学报(自然科学版), 2025, 40(1): 30-35.
[10] 倪江波. 加快推动建筑领域节能降碳促进经济社会发展全面绿色转型[J]. 建筑节能(中英文), 2024, 52(3): 3.
[11] Alonso R, Borras M, Koppelaar R H E M, et al. SPHERE: BIM digital twin platform[C] // Sustainable Places 2019. MDPI, 2019: 9.
[12] 李浩, 王昊琪, 刘根, 等. 工业数字孪生系统的概念、系统结构与运行模式[J]. 计算机集成制造系统, 2021, 27(12): 3373-3390.
[13] Grieves M, Vickers J. Digital Twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M] // Transdisciplinary Perspectives on Complex Systems. Cham: Springer, 2016: 85-113.
[14] 李娟. BIM技术和数字孪生技术在建筑工程中的应用特征及问题分析[J]. 四川水泥, 2024(9): 55-57.
[15] 夏雨, 段进. 雄安新区数字孪生城市建设探索[J/OL]. 东南大学学报(自然科学版), 2025: 1-9. (2025-03-13)[2025-03-28]. https://kns.cnki.net/kcms/detail/32.1178.N.20250312.1536.005.html.
[16] 王海山, 程雅坤, 万黎明. 基于数字孪生技术的“好房子”建设研究[J]. 质量与认证, 2024(2): 39-41.
[17] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
[18] 陶飞, 张贺, 戚庆林, 等. 数字孪生十问: 分析与思考[J]. 计算机集成制造系统, 2020, 26(1): 1-17.
[19] 陶飞, 张辰源, 戚庆林, 等. 数字孪生成熟度模型[J]. 计算机集成制造系统, 2022, 28(5): 1267-1281.
[20] Lu Q, Xie X, Parlikad A K, et al. Digital twin enabled anomaly detection for built asset monitoring in operation and maintenance[J]. Automation in Construction, 2020, 118: 103277.
[21] 杨健, 张安山, 庞博, 等. 元宇宙技术发展综述及其在建筑领域中的应用展望[J]. 土木与环境工程学报(中英文), 2024, 46(1): 33-45.
[22] 李翠环, 程训建. 数字孪生系统在建筑智能运维中的运用[J]. 建筑节能(中英文), 2024, 52(11): 98-105.
[23] Liu Z S, Li M M, Ji W Y. Development and application of a digital twin model for Net zero energy building operation and maintenance utilizing BIM-IoT integration[J]. Energy and Buildings, 2025, 328: 115170.
[24] Hakimi O, Liu H, Abudayyeh O, et al. Data fusion for smart civil infrastructure management: A conceptual digital twin framework[J]. Buildings, 2023, 13(11): 2725.
[25] 陆俊辉, 张光发, 陈田, 等. 深层地基加固数字孪生系统[J]. 浙江大学学报(工学版), 2025, 59(3): 488-495.
[26] 李继伟, 徐丽. 基于机器学习的建筑能耗研究进展[J]. 计算机科学与应用, 2020(5): 1002-1008.
[27] Saporiti N, Cannas V G, Pozzi R, et al. Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study[J]. International Journal of Production Economics, 2023, 261: 108888.
[28] Xu Y, Shen X, Lim S. CorDet: Corner-aware 3D object detection networks for automated scan-to-BIM[J]. Journal of Computing in Civil Engineering, 2021, 35(3): 04021002.
[29] Xu Y Z, Shen X S, Lim S, et al. Three-dimensional object detection with deep neural networks for automatic As-built reconstruction[J]. Journal of Construction Engineering and Management, 2021, 147(9): 04021098.
[30] Hosamo H, Hosamo M, Nielsen H K, et al. Digital Twin of HVAC system (HVACDT) for multiobjective optimization of energy consumption and thermal comfort based on BIM framework with ANN-MOGA[J]. Advances in Building Energy Research, 2023, 17(2): 125-171.
[31] 李继伟, 冯国会, 徐丽. 建筑能耗预测的机器学习回归模型研究[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(6): 1098-1106.
[32] Adreani L, Bellini P, Colombo C, et al. Implementing integrated digital twin modelling and representation into the Snap 4City platform for smart city solutions[J]. Multimedia Tools and Applications, 2024, 83(12): 37121-37146.
[33] Lu Y Q, Liu C, Wang K I, et al. Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837.
[34] Brucherseifer E, Winter H, Mentges A, et al. Digital Twin conceptual framework for improving critical infrastructure resilience[J]. At-Automatisierungstechnik, 2021, 69(12): 1062-1080.
[35] Boukaf M, Fadli F, Meskin N. A comprehensive review of digital twin technology in building energy consumption forecasting[J]. IEEE Access, 2024, 12: 187778-187799.
[36] Yang Z, Tang C, Zhang T R, et al. Digital twins in construction: Architecture, applications, trends and challenges[J]. Buildings, 2024, 14(9): 2616.
[37] 张勇峰. 数字孪生在建筑业全生命周期的应用综述[J]. 建筑经济, 2023, 44(S1): 479-483.
[38] Jradi M, Madsen B E, Kaiser J H. DanRETwin: A digital twin solution for optimal energy retrofit decision-making and decarbonization of the Danish building stock[J]. Applied Sciences, 2023, 13(17): 9778.
[39] Khalifa F, Marzouk M. Integrated blockchain and Digital Twin framework for sustainable building energy management[J]. Journal of Industrial Information Integration, 2025, 43: 100747.
[40] Doukari O, Suliman A. Renovation digital twin for building retrofit monitoring: A software product and an organizational ecosystem[C] // Proceedings of the 2024 European Conference on Computing in Construction. Sint-Niklaas, Belgium: European Council on Computing in Construction (EC3), 2024: 225.
[41] 何世彪, 杨士中. 3σ准则在小波消噪中的应用[J]. 重庆大学学报(自然科学版), 2002, 25(12): 58-61.
[42] 苏杭. 数字孪生在超低能耗建筑中的探索与应用[J]. 河南科技, 2025, 52(4): 30-36.
[43] 郭溪. 基于数字孪生的低碳数字少年宫建设方案研究[J]. 经济研究导刊, 2023(18): 57-59.
[44] 李艳, 宋晋, 卢严. 基于数字孪生的绿色低碳建筑管理平台设计与实现[J]. 现代信息科技, 2025, 9(3): 146-152.
[45] 虞婧, 魏红磊, 周亘儒, 等. 基于数字孪生技术的低碳选煤厂能源监控平台应用研究[J]. 煤炭工程, 2024, 56(12): 12-18.
[46] Uppal M, Gupta D, Mahmoud A, et al. Fault prediction recommender model for IoT enabled sensors based workplace[J]. Sustainability, 2023, 15(2): 1060.
[47] 周涵宇, 王立雄, 刘刚. 建筑表皮综合环境数字孪生模型构建及模拟平台[J]. 南方建筑, 2024(6): 107-115.
[48] Borkowski A S. Digital twin conceptual framework for the operation and maintenance phase in the building’s lifecycle[J]. Archives of Civil Engineering, 2024, 70(3): 139-152.
[49] 罗干昊, 时旭, 郭锦杰, 等. 基于CIM数字孪生平台管控建筑碳排放数据有效途径[C] // 2024年全国土木工程施工技术交流会. 北京: 《施工技术》杂志社, 2024: 929-932.
[50] Rutkowski R, Raczyński M, Iwańkowicz R, et al. Digital twin in the design and dynamic assessment of energy performance of multi-family buildings[J]. Energies, 2024, 17(23): 6150.
[51] 卞守国. 浅谈数字孪生技术在建筑低碳运维中的应用[J]. 住宅与房地产, 2025(1): 46-47.
[52] 宋坤桃, 王艳超. 绿色建筑智能化监控平台的研究: 数字孪生技术的应用[J]. 智能建筑与智慧城市, 2024(11): 86-88.
[53] 梅乐, 李嘉琪, 李军锋, 等. 基于数字孪生的智慧低碳园区管理平台设计: 以佛山市佛中人才灯塔产业园为例[J]. 智能建筑与智慧城市, 2023(3): 14-17.
[54] 李大鹏. 基于BIM数字孪生的绿色节能装配式建筑智慧管理研究[J]. 建设科技, 2024(16): 13-15.
[55] Arsecularatne B P, Rodrigo N, Chang R. Review of reducing energy consumption and carbon emissions through digital twin in built environment[J]. Journal of Building Engineering, 2024, 98: 111150.
[56] 覃文波, 周诚, 陈健, 等. 地铁桥隧结构服役数字孪生平台研究[J]. 工业建筑, 2024, 54(2): 43-50.
[57] Angjeliu G, Coronelli D, Cardani G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality[J]. Computers & Structures, 2020, 238: 106282.
[58] Eneyew D D, Capretz M A M, Bitsuamlak G T. Continuous model calibration framework for smart-building digital twin: A generative model-based approach[J]. Applied Energy, 2024, 375: 124080.
[59] Mohamad Zaidi N H, Lim C H, Razali H. Mitigating the energy consumption and carbon emissions of a residential area in a tropical city using digital twin technology: A case study of bertam, Penang[J]. Buildings, 2024, 14(3): 638.
[60] Han F Y, Du F, Jiao S, et al. Predictive analysis of a building’s power consumption based on digital twin platforms[J]. Energies, 2024, 17(15): 3692.
[61] 卢昱杰, 仲涛, 张修龙, 等. 塔吊回转视角下施工场景数字孪生高效建模方法[J]. 土木工程学报, 2025, 58(4): 124-136.
[62] Pereira P F, Vidal J, Ramos N M M. Enhancing hygrothermal monitoring of wet construction with digital twins[J]. Building and Environment, 2024, 262: 111843.

相似文献/References:

[1]林奔,桂宁,董彦松,等.基于BIM的接地网系统设计与电气仿真[J].浙江理工大学学报,2016,35-36(自科2):257.
 LIN Ben,GUI Ning,DONG Yansong,et al.Design of BIMBased Ground Grid System and Electric Simulation[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科一):257.

备注/Memo

备注/Memo:
基金项目 : 教育部供需对接就业育人项 目 (2024010640033) ; 莆田学院教改项 目 (JG202453) ; 莆田学院妈祖文化数智实验室科研课题(MZYB2025006)收稿日期 : 2025-03-28 网络出版日期 : 2025-07-04
作者简介 : 彭 颖(1991— ) ,女 ,福建莆田人 ,福建省社科研究莆田学院妈祖文化研究中心讲师 ,博士研究生 ,主要从事古建筑数字化保护和智能建造等方面的研究。
更新日期/Last Update: 2026-01-08