|本期目录/Table of Contents|

[1]陈昌娣,徐映红.(2+1)维复Ginzburg Landau方程的有限差分法及稳定性分析[J].浙江理工大学学报,2025,53-54(自科三):432-441.
 CHEN Changdi,XU Yinghong.The finite difference method and stability analysis of a (2+1)  dimensional complex Ginzburg Landau equation[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科三):432-441.
点击复制

(2+1)维复Ginzburg Landau方程的有限差分法及稳定性分析()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第三期
页码:
432-441
栏目:
出版日期:
2025-05-05

文章信息/Info

Title:
The finite difference method and stability analysis of a (2+1)  dimensional complex Ginzburg Landau equation
文章编号:
1673-3851 (2025) 05-0432-10
作者:
陈昌娣徐映红
浙江理工大学理学院,杭州 310018
Author(s):
CHEN ChangdiXU Yinghong
School of Science, Zhejiang SciTech University, Hangzhou 310018, China
关键词:
GinzburgLandau方程数值模拟有限差分法傅里叶分析稳定性
分类号:
TS101; O242-1
文献标志码:
A
摘要:
以包含色散、光学滤波、非线性增益和线性增益项的(2+1)维复GinzburgLandau方程为研究对象,提出了求解该方程的有限差分格式,证明了方程解的有界性、差分格式的稳定性。首先,构造了求解该方程的有限差分格式,时间上采用二阶倒向微分格式,空间上采用中心差分格式,利用外推方法替代非线性项,从而得到一个二层非线性差分格式及其对应的交替方向隐格式。然后,利用傅里叶分析方法从理论上证明了该格式是无条件稳定的。最后,通过数值实验验证差分格式模拟孤子演化的有效性,并探究初始扰动和边界扰动对孤子演化的影响。结果表明:该差分格式是稳定的,且具有二阶精度;相比边界扰动,初始扰动对孤子演化的影响更大。该研究结果可丰富GinzburgLandau方程的理论研究,为研究Ginzburg Landau方程的参数确定反问题提供一定基础。

参考文献/References:

[1]Ginzburg V L, Landau L D. On the theory of superconductivity[M]∥ Ginzburg V L. On Superconductivity and Superfluidity: A Scientific Autobiography. Berlin, Heidelberg: Springer, 2009:113-137.
[2]Aranson I S, Kramer L. The world of the complex Ginzburg-Landau equation[J]. Reviews of Modern Physics, 2002, 74(1):99-143.
[3]Chang W, Ankiewicz A, Soto-Crespo J M, et al. Dissipative soliton resonances[J]. Physical Review A, 2008, 78(2):023830.
[4]Kraus M, Walter D, Michalowski A, et al. Processing techniques and system technology for precise and productive microdrilling in metals[J]. Springer Series in Optical Sciences, 2016, 195: 201-230.
[5]He Y J, Mihalache D. Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials[J]. Physical Review A, 2013, 87: 013812.
[6]Liu Y, Chen S Q, Wei L X, et al. Exact solutions to complex Ginzburg-Landau equation[J]. Pramana, 2018, 91(2): 29.
[7]Osman M S, Ghanbari B, Machado J A T. New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity[J]. The European Physical Journal Plus, 2019, 134(1): 20.
[8]Yan Y Y, Liu W J. Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation[J]. Chinese Physics Letters, 2021, 38(9): 094201.
[9]胡艳,孙峪怀.应用多项式完全判别系统方法求解时空分数阶复Ginzburg-Landau方程[J].应用数学和力学,2021,42(8):874-880.
[10]杨佳奇,刘文军.基于变系数3+1维三次-五次复金兹堡-朗道方程的亮孤子及混合孤子传输特性[J]. 物理学报, 2023, 72(10): 173-179.

相似文献/References:

[1]黄远民,李昳,崔巧玲,等.IS型离心泵内部流动的三维数值模拟[J].浙江理工大学学报,2011,28(02):221.
[2]谷壮志,王超,施红辉,等. 激波诱导火焰变形的数值模拟[J].浙江理工大学学报,2011,28(04):529.
 GU Zhuang zhi,WANG Chao,SHI Hong hui,et al. The Numerical Simulation of the Flame Deformation Induced by Shock Wave[J].Journal of Zhejiang Sci-Tech University,2011,28(自科三):529.
[3]张光,崔宝玲,金英子,等.微型激波管内部激波特性的数值模拟[J].浙江理工大学学报,2015,33-34(自科6):805.
 ZHANG Guang,CUI Bao ling,JIN Ying zi,et al.Numerical Simulation of Shock Wave Characteristics in Micro Shock Tubes[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科三):805.
[4]吴文军,金英子,王艳萍,等.叶根倒角对小型轴流风扇静特性的影响[J].浙江理工大学学报,2015,33-34(自科6):812.
 WU Wen jun,JIN Ying zi,WANG Yan ping,et al.Effect of Blade Root Fillet on Static Characteristics of Small Axial Fans[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科三):812.
[5]陈蒙蒙,张先明,陈文兴,等.浸渍涂覆过程中液膜流动的数值模拟[J].浙江理工大学学报,2016,35-36(自科1):47.
 CHEN Mengmeng,ZHANG Xianming,CHEN Wenxing,et al.Numerical Simulation of Liquid Film Flow in Dip Coating Process[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科三):47.
[6]郑路路,窦华书,蒋威,等.基于能量梯度方法的叶片数对离心泵稳定性影响研究[J].浙江理工大学学报,2016,35-36(自科1):71.
 XU Jun,JIANG Kejian,WANG Jun.Adaptive Active Control of Single Freedom Simple  Harmonic Vibration of Electromagnet Bearing[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科三):71.
[7]曾清娟,马亚萍,路秋英.时滞群体竞技体育模型的稳定性与Hopf分支研究[J].浙江理工大学学报,2016,35-36(自科1):154.
 ZENG Qingjuan,MA Yaping,LU Qiuying.Stability and Hopf Bifurcation of Time delay Group Competitive Sports Model[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科三):154.
[8]李相东,金玉珍,崔靖渝,等.转杯纺转杯内气流场特性的研究[J].浙江理工大学学报,2016,35-36(自科2):211.
 LI Xiangdong,JIN Yuzhen,CUI Jingyu,et al.Research on the Characteristics of Internal Airflow Field in Spinning Cup of Rotor Spinning Machine[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科三):211.
[9]张鑫,崔宝玲,周汉涛,等.不同起始直径分流叶片的离心泵内部流场数值分析[J].浙江理工大学学报,2016,35-36(自科2):225.
 ZHANG Xin,CUI Baoling,ZHOU Hantao,et al.Numerical Analysis on Internal Flow Field of Centrifugal Pump  with Splitter Blades of Different Initial Diameters[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科三):225.
[10]施红辉,周杨洁,彭立兵,等.伴随空化现象的细长体倾斜穿透水体过程研究[J].浙江理工大学学报,2016,35-36(自科3):392.
 SHI Honghui,ZHOU Yangjie,PENG Libing,et al.Research on Obliquely Penetrating Water of a Slender Body Accompanying Cavitation Phenomenon[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科三):392.

备注/Memo

备注/Memo:
收稿日期: 2023-02-22
网络出版日期:2023-09-08
基金项目: 国家自然科学基金项目(11501513,11471287);浙江省自然科学基金项目(LY18A010030)
作者简介: 陈昌娣(1997—),女,贵州贵阳人,硕士研究生,主要从事反问题理论及应用方面的研究
通信作者: 徐映红,E-mail:xyh7913@163.com
更新日期/Last Update: 2025-05-06