[1]Algaba A, Freire E, Gamero E, et al. Monodromy, centerfocus and integrability problems for quasihomogeneous polynomial systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(3/4): 17261736.
[2]Arnold V I, Il’yashenko Y S. Ordinary Differential Equations[M]. Berlin: SpringerVerlag, 1988: 1148.
[3]张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1985: 1996.
[4]Poincar H. Mmoire Sur Les Courbes Dfinies Par Une quation Diffrentielle Oeuvres[M]. Paris: GauthierVillars, 1957: 251290.
[5]Andreev A F. Investigation of the behaviour of the integral curves of a system of two differential equations in the neighborhood of a singular point[J]. Transactions of the American Mathematical Society, 1958, 8(2):183207.
[6]lvarez M J, Ferragut A, Jarque X. A survey on the blow up technique[J]. International Journal of Bifurcation and Chaos, 2011, 21(11): 31033118.
[7]Algaba A, García C, Reyes M. Characterization of a monodromic singular point of a planar vector field[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(16): 54025414.
[8]Maosa V. On the center problem for degenerate singular points of planar vector fields[J]. International Journal of Bifurcation and Chaos, 2002, 12(4): 687707.
[9]García I A, Gin J, Grau M. A necessary condition in the monodromy problem for analytic differential equations on the plane[J]. Journal of Symbolic Computation, 2006, 41(9): 943958.
[10]Algaba A, García C, Reyes M. A new algorithm for determining the monodromy of a planar differential system[J]. Applied Mathematics and Computation, 2014, 237: 419429.
[1]梅世明,黄土森.一类平面解析系统强退化奇点的可积性[J].浙江理工大学学报,2024,51-52(自科二):255.
MEI Shiming,HUANG Tusen.The integrability of strongly degenerate singularity for a class of planar analytical systems[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):255.