[ 1 ] Rogers D G. Pascal triangles, Catalan numbers and renewal arrays [ J ] . Discrete Mathematics, 1978, 22(3): 301-310. [2]Shapiro L W, Getu S, Woan W J, et al. The Riordan group[J]. Discrete Applied Mathematics, 1991, 34(1/2/3): 229-239. [3]Wang W P, Wang T M. Generalized Riordan arrays[J]. Discrete Mathematics, 2008, 308(24): 6466-6500. [4]张晨璐, 王伟平. 与Riordan阵相关的若干多项式序列的关系研究[J]. 浙江理工大学学报(自然科学版), 2019, 41(6): 818-822. [5]Barry P, Hennessy A, Pantelidis N. Algebraic properties of Riordan subgroups[J]. Journal of Algebraic Combinatorics, 2021, 53(4): 1015-1036. [6]He T X, Hsu L C, Shiue P J S. The Sheffer group and the Riordan group[J]. Discrete Applied Mathematics, 2007, 155(15): 1895-1909. [7]Luzn A, Merlini D, Morn M A, et al. Complementary Riordan arrays[J]. Discrete Applied Mathematics, 2014, 172: 75-87. [8]Luzn A, Morn M A, Prieto-Martínez L F. The group generated by Riordan involutions[J]. Revista Matemtica Complutense, 2022, 35(1): 199-217. [9]Cheon G S, Kim H. The elements of finite order in the Riordan group over the complex field[J]. Linear Algebra and Its Applications, 2013, 439(12): 4032-4046. [10]Deo N, Quinn M J. Pascal graphs and their properties[J]. Fibonacci Quarterly, 1983, 21: 203-214.
[1]张晨璐,王伟平.与Riordan阵相关的若干多项式序列的关系研究[J].浙江理工大学学报,2019,41-42(自科六):818.
ZHANG Chenlu,WANG Weiping.Study on the relations of some polynomial sequences related to the Riordan arrays[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科二):818.