|本期目录/Table of Contents|

[1]张殿焜,靳聪明.基于残差神经网络模型的Fredholm积分方程数值解法[J].浙江理工大学学报,2020,43-44(自科五):706-721.
 ZHANG Diankun,JIN Congming.Numerical method of Fredholm integral equation based on residual neural network model[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科五):706-721.
点击复制

基于残差神经网络模型的Fredholm积分方程数值解法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科五期
页码:
706-721
栏目:
出版日期:
2020-09-18

文章信息/Info

Title:
Numerical method of Fredholm integral equation based on residual neural network model
文章编号:
1673-3851 (2020) 05-0706-08
作者:
张殿焜靳聪明
浙江理工大学理学院,杭州 310018
Author(s):
ZHANG DiankunJIN Congming
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
残差神经网络Fredholm积分方程高维积分方程最小二乘法
分类号:
O175-5;TP183
文献标志码:
A
摘要:
为了求解Fredholm积分方程,特别是高维Fredholm积分方程,提出了一种采用残差神经网络求解Fredholm积分方程的数值方法。首先在求解区域随机产生训练数据集,通过前向传播残差神经网络得到训练集上的预测值;然后代入Fredholm积分方程得到离散格式,并定义损失函数,将解Fredholm积分方程转化为一个最小二乘问题;最后利用残差神经网络进行优化求解。该方法形式简单,对高维Fredholm积分方程求解问题计算量无显著增加。数值实验表明:该方法能有效求解Fredholm积分方程,且能取得很好的收敛精度;所训练的残差神经网络不会出现网络退化现象,表现出稳定性好、泛化能力强等优点。

参考文献/References:

[1] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133.
[2] Hinton G E. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[3] Sermanet P, Chintala S, Lecun Y. Convolutional neural networks applied to house numbers digit classification[C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba: IEEE, 2012: 3288-3291.
[4] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate.(2020-01-07)[2016-05-19]. https://arXiv:1409-0473.
[5] Huang P, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2013: 2333-2338.
[6] Wang Y Q, Huang M L, Zhu X Y, et al. Attentionbased LSTM for aspectlevel sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin: Association for Computational Linguistics, 2016: 606-615.
[7] Li X, Bing L, Lam W, et al. Transformation networks for targetoriented sentiment classification[EB/OL].(20200107)[20180503]. https:// arXiv.org/abs/1805-01086.
[8] Yi C, Chen Y, Lu Z. Improved gradientbased neural networks for online solution of Lyapunov matrix equation[J]. Information Processing Letters, 2011, 111(16): 780-786.
[9] E W, Yu B. The Deep Ritz method: A deep learningbased numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1):1-12.
[10] E W N, Han J Q, Jentzen A. Deep learningbased numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[J]. Communications in Mathematics and Statistics, 2017, 5(4): 349-380.

相似文献/References:

[1]管钰,丁玖,靳聪明.基于分片线性最大Renyi熵的Fredholm积分方程数值解法[J].浙江理工大学学报,2022,47-48(自科六):950.
 GUAN Yu,DING Jiu,JIN Congming.Numerical solution of Fredholm integral equations via  piecewise linear maximum Rényi entropy method[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科五):950.

备注/Memo

备注/Memo:
收稿日期:2020-01-10
网络出版日期:2020-05-08
基金项目:国家自然科学基金项目(11571314)
作者简介:张殿焜(1993-),男,河南平顶山人,硕士研究生,主要从事机器学习方面的研究
通信作者:靳聪明,E-mail:jincm@lsec.cc.ac.cn
更新日期/Last Update: 2020-09-15