[1] Constantin A, Kolev B. Geodesic flow on the diffeomorphism group of the circle[J]. Commentarii Mathematici Helvetici, 2003, 78(4): 787-804.
[2] Constantin A, Kolev B. Integrability of invariant metrics on the diffeomorphism group of the circle[J]. Journal of Nonlinear Science, 2006, 16(2): 109-122.
[3] Mclachlan R, Zhang X Y. Wellposedness of modified CamassaHolm equation[J]. Journal of Differential Equations, 2009, 246(8): 3241-3259.
[4] Mu C L, Zhou S M, Zeng R. Wellposedness and blowup phenomena for a higher order shallow water equation[J]. Journal of Differential Equations, 2011, 251(12): 3488-3499.
[5] Fu Y G, Liu Z R, Tang H. Nonuniform dependence on initial data for the modified CamassaHolm equation on the line[J]. Acta Mathematica Scientia, 2014, 34B(6): 1781-1794.
[6] 冉丽霞,陈涌.耗散修正的CamassaHolm方程解的存在唯一性[J]. 浙江理工大学学报(自然科学版), 2018, 39(6): 759-764.
[7] Miyatake Y, Matsuo T, Furihata D. Conservative finite difference schemes for the modified CamassaHolm equation[J]. JSIAM Letters, 2011, 3: 37-40.
[8] Miyatake Y, Matsuo T, Furihata D. Invariantspreserving integration of the modified CamassaHolm equation[J]. Japan Journal of Industrial and Applied Mathematics, 2011, 28: 351-381.
[9] Crisan D, Holm D D. Wave breaking for the stochastic CamassaHolm equation[J]. Physica D: Nonlinear Phenomena, 2018, 376/377: 138-143.
[10] Varadhan S R S. Large Deviations and Applications[M]. New York: Society for Industrial and Applied Mathematics, 1984: 3-6.