|本期目录/Table of Contents|

[1]彭鹏,徐定华.热防护服中反常热扩散方程Robin问题的条件适定性[J].浙江理工大学学报,2020,43-44(自科二):267-271.
 PENG Peng,XU Dinghua.Conditional wellposedness of Robin problem for anomalous thermal diffusion equations of thermal protective clothing[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科二):267-271.
点击复制

热防护服中反常热扩散方程Robin问题的条件适定性()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科二期
页码:
267-271
栏目:
出版日期:
2020-05-18

文章信息/Info

Title:
Conditional wellposedness of Robin problem for anomalous thermal diffusion equations of thermal protective clothing
文章编号:
1673-3851 (2020) 03-0267-05
作者:
彭鹏徐定华
浙江理工大学理学院,杭州 310018
Author(s):
PENG Peng XU Dinghua
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
反常热扩散分数阶Robin边界条件空间分数阶模型变分形式弱解
分类号:
O242-1
文献标志码:
A
摘要:
根据连续时间随机游走理论,建立热防护服中具有反常热扩散规律和分数阶Robin边界条件的空间分数阶模型,用以描述高温环境下各向同性材料内部及边界上的热传递规律。针对该模型,首先提出了该模型的变分形式,并通过乘以一个简单函数因子,消除了此模型齐次问题的奇异性,给出了变分问题弱解的定义;然后根据分数阶导数算子和分数阶积分算子的性质证明了该模型的条件适定性,即弱解的能量估计和弱解的唯一性。反常扩散方程Robin问题的条件适定性结果有利于分析数值算法的收敛性,并为热防护服性能评估提供理论指导。

参考文献/References:

[1] Henry P S H. Diffusion in absorbing media[J]. Proceedings of the Royal Society A, 1939, 171(2): 215-241.
[2] Torvi D A, Dale J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
[3] Mell W E, Lawson J R. A heat transfer model for fire fighter’s protective clothing[J]. Fire Technology, 2000, 36(1): 39-68.
[4] Mercer G N, Sidhu H S. Mathematical modelling of the effect of fire exposure on a new type of protective clothing[J]. Australian & New Zealand Industrial & Applied Mathematics Journal, 2008, 48: 289-305.
[5] Fan J T, Cheng X Y, Wen X H, et al. An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2343-2352.
[6] Fan J T, Luo Z X, Li Y. Heat and moisture with sorption and condensation in porous clothing assemblies and numerical simulation[J]. International Journal of Heat and Mass Transfer, 2000, 43(16):2989-3000.
[7] Wu H J, Fan J T. Study of heat and moisture transfer within multilayer clothing assemblies consisting of different types of battings[J]. International Journal of Thermal Sciences, 2008, 47(5): 641-647.
[8] Ye C, Huang H, Fan J T, et al. Numerical study of heat and moisture transfer in textile materials by a finite volume method[J]. Communications in Computational Physics, 2008, 4(4):929-948.
[9] Yu Y, Xu D H, Xu Y S, et al. Variational formulation for a fractional heat transfer model in firefighter protective clothing[J]. Applied Mathematical Modelling, 2016, 40(23/24): 9675-9691.
[10] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京: 科学出版社, 2011:1-26.

备注/Memo

备注/Memo:
收稿日期:2019-10-12
网络出版日期:2020-01-02
基金项目:国家自然科学基金项目(11871435,11471287)
作者简介:彭鹏(1994-),女,安徽宿州人,硕士研究生,主要从事偏微分方程反问题方面的研究
通信作者:徐定华,E-mail:dhuxu6708@zstu.edu.cn
更新日期/Last Update: 2020-04-10