|本期目录/Table of Contents|

[1]訾园兴,刘涛,陈颖睿,等.SF/SA/HBG纤维支架材料的构建及体外生物矿化[J].浙江理工大学学报,2019,41-42(自科四):427-432.
 ZI Yuanxing,LIU Tao,CHEN Yingrui,et al.Construction of SF/SA/HBG fiber scaffold materials and in vitro biomineralization[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科四):427-432.
点击复制

SF/SA/HBG纤维支架材料的构建及体外生物矿化()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第41-42卷
期数:
2019年自科四期
页码:
427-432
栏目:
出版日期:
2019-06-20

文章信息/Info

Title:
Construction of SF/SA/HBG fiber scaffold materials and in vitro biomineralization
文章编号:
1673-3851 (2019) 07-0427-06
作者:
訾园兴刘涛陈颖睿任旭丁新波
浙江理工大学,a.材料与纺织学院、丝绸学院,b科技与艺术学院,杭州310018
Author(s):
ZI Yuanxing LIU Tao CHEN Yingrui REN Xu DING Xinbo
a.Silk Institute,College of Materials and Textiles; b. Keyi College, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
静电纺丝生物支架材料体外生物矿化生物活性
分类号:
TQ127-2
文献标志码:
A
摘要:
由静电纺丝技术纺制的纤维支架材料能够提供大的比表面积及较高的孔隙率。以甲酸为溶剂,丝素蛋白(Silk fibroin,SF)和海藻酸钠(Sodium alginate,SA)为基体材料,并加入中空生物活性玻璃(Hollow bioactive glass,HBG),复合成体外生物活性较好的生物支架材料;通过体外生物矿化可以加速羟基磷灰石(Hydroxyapatite,HAp)的沉积及生长。经过一系列测试分析,结果显示:通过静电纺丝制备出SF/SA/HBG纤维复合膜,其平均直径分布在200~300 nm;经过乙醇处理后,纤维表面发生溶胀,直径变粗,平均直径分布在230~380 nm;进行体外生物矿化后,在纤维表面形成HAp,SF/SA/HBG纤维复合支架材料具有良好的生物活性。

参考文献/References:

[1] Jin H J, Park J, Valluzzi R, et al. Biomaterial films of bombyx m ori silk fibroin with poly (ethylene oxide)[J]. Biomacromolecules, 2004, 5(3): 711-717.
[2] Hofmann S, Foo C T W P, Rossetti F, et al. Silk fibroin as an organic polymer for controlled drug delivery[J]. Journal of Controlled Release, 2006, 111(1/2): 219-227.
[3] Kim U J, Park J, Kim H J, et al. Threedimensional aqueousderived biomaterial scaffolds from silk fibroin[J]. Biomaterials, 2005, 26(15): 2775-2785.
[4] Inouye K, Kurokawa M, Nishikawa S, et al. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells[J]. Journal of Biochemical and Biophysical Methods, 1998, 37(3): 159-164.
[5] Yoshimoto H, Shin Y M, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J]. Biomaterials, 2003, 24(12): 2077-2082.
[6] Kim H J, Kim U J, Kim H S, et al. Bone tissue engineering with premineralized silk scaffolds[J]. Bone, 2008, 42(6): 1226-1234.
[7] Holzwarth J M, Ma P X. Biomimetic nanofibrous scaffolds for bone tissue engineering[J]. Biomaterials, 2011, 32(36): 9622-9629.
[8] Zahedi P, Rezaeian I, RanaeiSiadat S O, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies, 2010, 21(2): 77-95.
[9] Sahoo S, Toh S L, Goh J C H. A bFGFreleasing silk/PLGAbased biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells[J]. Biomaterials, 2010, 31(11): 2990-2998.
[10] Jin H J, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats[J]. Biomaterials, 2004, 25(6): 1039-1047.

相似文献/References:

[1]王敏超,熊杰.聚酰亚胺纳米纤维膜的制备和力学性能研究[J].浙江理工大学学报,2014,31-32(自科6):617.
 WANG Min chao,XIONG Jie.Study on Preparation and Mechanical Properties of Polyimide Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科四):617.
[2]张洁,张海涛,邢同海,等.超声处理对聚乳酸/丝素蛋白复合纳米纤维膜孔径的影响[J].浙江理工大学学报,2015,33-34(自科6):771.
 ZHANG Jie,ZHANG Hai tao,XING Tong hai,et al.Effects of Ultrasonic Treatment on Pore Size of Polylactic Acid /Silk Fibroin Composite Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科四):771.
[3]高强,童宁军,鲍纬,等.γ-Fe-2O-3@C柔性复合纳米纤维的制备及结构性能[J].浙江理工大学学报,2016,35-36(自科3):351.
 GAO Qiang,TONG Ningjun,BAO Wei,et al.Preparation, Structural Properties of Flexible γ Fe 2O 3@C Composite Nanofibers[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科四):351.
[4]张立,刘涛,张丽香,等.PEO/SA生物活性玻璃支架的制备和生物活性研究[J].浙江理工大学学报,2018,39-40(自科3):299.
 ZHANG Li,LIU Tao,ZHANG Lixiang,et al.Preparation and bioactivity of bioactive glass scaffold based on PEO/SA[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科四):299.
[5]康静,骆菁菁,熊杰.氧化锆@生物活性玻璃/碳纳米纤维复合膜的制备及其性能[J].浙江理工大学学报,2020,43-44(自科五):609.
 KANG Jing,LUO Jingjing,XIONG Jie.Preparation and properties of zirconia@bioactive glass/carbon nanofiber membranes[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科四):609.
[6]郑洁,刘涛,丁新波,等.SF/GO纳米纤维复合支架的制备及体外生物活性[J].浙江理工大学学报,2022,47-48(自科二):147.
 ZHENG Jie,LIU Tao,DING Xinbo,et al.Preparation and in vitro biological activity of SF/GO nanofiber composite scaffold[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):147.
[7]王莉,刘涛,丁新波,等.丝素-壳聚糖/聚氧化乙烯双层纳米纤维膜制备及其生物活性[J].浙江理工大学学报,2022,47-48(自科四):474.
 WANG Li,LIU Tao,DING Xinbo,et al.Preparation of silk fibroin chitosan/polyvinyl oxide  bilayer nanofiber membrane and its bioactivity[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):474.
[8]韦悦,王晟,纪律律.硒化钌复合碳纳米纤维的制备及其电催化析氢性能[J].浙江理工大学学报,2022,47-48(自科四):496.
 WEI Yue,WANG Sheng,JI Lülü.Preparation of ruthenium selenide composited carbon  nanofiber and its electrocatalytic hydrogen evolution performance[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):496.
[9]余兆勇,王诗雯,王莉莉,等.聚吡咯改性钛酸钡纳米颗粒/聚偏氟乙烯复合压电薄膜的制备及性能分析[J].浙江理工大学学报,2024,51-52(自科四):466.
 YU Zhaoyong,WANG Shiwen,WANG Lili,et al.Preparation of polypyrrole modified barium titanate nanoparticles/polyvinylidene fluoride composite piezoelectric films and  their performance analysis[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科四):466.
[10]杨翊铭,王晟,纪律律.碲化铜双功能催化剂用于电催化肼氧化辅助制氢[J].浙江理工大学学报,2024,51-52(自科五):618.
 YANG Yiming,WANG Sheng,JI Lülü.The application of a bifunctional copper telluride catalyst for electrocatalytic  hydrazine oxidation assisted hydrogen production[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科四):618.

备注/Memo

备注/Memo:
收稿日期: 2018-09-27
网络出版日期: 2018-12-01
基金项目:浙(中)江省自然科学基金项目(LY16E020012);浙江理工大学科研启动基金项目(15012081-Y);浙江理工大学研究生创新基金项目(11110131201716);浙江理工大学科技与艺术学院面上项目(KY2017010)
作者简介:訾园兴(1992-),男,河南周口人,硕士研究生,主要从事现代纺织技术及新产品开发方面的研究
通信作者:丁新波,E-mail:dxblt@zstu.edu.cn
更新日期/Last Update: 2019-09-16