[1] Kermack W O, Mckendrick A G.A contribution to the mathematical theory of epidemics [J]. Proceedings of the Royal Society of London Series A, 1927, 115:700-721.
[2] Wei J J, Cui J A. Dynamics of SIS epidemic model with the standard incidence rate and saturated treatment function [J].International Journal of Biomathematics, 2012, 5(3):1-18.
[3] Hu Z X, Liu S, Wang H. Backward bifurcation of an epidemic model with standard incidence rate and treatment rate [J].Nonlinear Mathematical Real World Applications, 2008, 9(5):2302-2312.
[4] Capasso V, Serio G.A generalization of the KermackMckendrick deterministic epidemic model [J]. Mathematical Biosciences, 1978, 42:43-75.
[5] 吴琼,滕志东.一类具有饱和发生率和治疗的SIS传染病模型的后向分支及动力学行为[J].新疆大学学报(自然科学版),2014,31(2):174-180.
[6] 周康, 路秋英.带有线性饱和治疗函数的SIR模型动力学研究[J].浙江理工大学学报,2017,37(6):874-880.
[7] Khan MA, Khan Y, Islam S. Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment [J]. Physica AStatistical Mechanics and Its Applications, 2018(493):210-227.
[8] Zhou T T, Zhang W P, Lu Q Y. Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function [J].Applied Mathematics and Computation, 2014, 226(1):288-305.
[9] Xiao D M, Ruan S G. Global analysis of an epidemic model with nonmonotone incidence rate [J].Mathematical Biosciences, 2007, 208(2):419-429.
[10] Ruan S G, Wang W D. Dynamical behavior of an epidemic model with a nonlinear incidence rate [J].Journal of Differential Equations, 2003, 188(1):135-163.
[1]周康,路秋英.带有线性饱和治疗函数的SIR-模型动力学研究[J].浙江理工大学学报,2017,37-38(自科6):874.
ZHOU Kang,LU Qiuying.Research on Dynamical Behaviors of SIR Epidemic Model with Linear Saturation Therapy Function[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科5):874.