[1] HUGHES D, WEN J T. Preisach modeling of piezoceramic and shape memory alloy hysteresis [J]. Smart Materials and Structures, 1997, 6(3): 287-300.
[2] 李振伟.振动控制中作动器迟滞非线性补偿方法研究[D].上海:上海交通大学,2011:17-18.
[3] CHEN X, HISAYAMA T, SU C Y. Adaptive control for uncertain continuoustime systems using implicit inversion of prandtlishlinskii hysteresis representation[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2357-2363.
[4] OH J H, BERNSTEIN D S. Semilinear Duhem model for rateindependent and ratedependent hysteresis [J]. IEEE Transactions on Automatic Control, 2005, 50(5): 631-645.
[5] GU G Y, YANG M J, ZHU L M. Realtime inverse hysteresis compensation of piezoelectric actuators with a modified PrandtlIshlinskii model [J]. Review of Scientific Instruments, 2012, 83(6): 065106.
[6] 赵新龙,道欣.迟滞非线性系统的反演滑模控制器设计[J].浙江理工大学学报,2016,35(4):592-595.
[7] PING G, JOUANEH M. Tracking control of a piezoceramic actuator [J]. IEEE Transactions on Control System Technology, 1996, 4(3): 209-216.
[8] ZHOU J. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity [J]. IEEE Transactions on Automatic Control, 2012, 57(10): 2627-2633.
[9] YING F, HENRY H, et al. Robust adaptive control law for a class of nonlinear systems with differential equationbased hysteresisDuhem representation [J]. IEEE Transactions on Automatic Control, 2010, 25(2): 1339-1344.