[1] LEE G Y, ASCI M. Some properties of the( p,q ) Fibonacci and( p,q ) Lucas polynomials. Journal of Applied Mathematics, 2012: 1-18. http://dx.doi.org/10.1155/2012/264842.
[2] WANG J Z. Some new results for the( p,q )Fibonacci and Lucas polynomials[J]. Andvances in Difference Equations . 2014, 64: 1-15.
[3] HE T X, SHIUE P J S. On sequences of numbers and polynomials defined by linear recurrence relations of order 2. International Journal of Mathematics and Mathematical Sciences. 2009: 1-12. http://dx.doi.org/10. 1155//2009/709386.
[4] CHEON G S, KIM H, SHAPIRO L W. A generalization of Lucas polynomial sequence[J]. Discrete Applied Mathematics , 2009, 157(5): 920-927.
[5] MA S M. Identities involving generalized Fibonacci type polynomials[J]. Applied Mathematics and Computation , 2011, 217(22): 9297-9301.
[6] NALLI A, HAUKKANEN P. On generalized Fibonacci and Lucas polynomials[J]. Chaos Solitons Fractals, 2009, 42(5): 3179-3186.
[7] FALCON S. On the sequences of products of two k Fibonacci numbers[J]. American Review of Mathematics and Statistics, 2014, 1(2): 111-120.
[1]裘松良,丁志栓,王婕.(p,q)-Grotzsch环函数与(p,q)-Hübner函数的一些性质[J].浙江理工大学学报,2020,43-44(自科六):846.
QIU Songliang,DING Zhishuan,WANG Jie.Some properties of the (p,q) Grtzsch ring function and (p,q) Hübner function[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科1):846.
[2]林杰,张孝惠.广义Grotzsch函数的一些函数不等式[J].浙江理工大学学报,2022,47-48(自科四):579.
LIN Jie,ZHANG Xiaohui.Some functional inequalities for the generalized Grotzsch function[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科1):579.