[1] 李瑞峰, 王亮亮, 王珂. 人体动作行为识别研究综述[J]. 模式识别与人工智能, 2014, 27(1): 35-48.
[2] 杜鉴豪, 许力. 基于区域光流特征的异常行为检测[J]. 浙江大学学报: 工学版, 2011, 45(7): 1161-1166.
[3] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]// Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver, BC, Can:[s.n.], 1981, 81: 674-679.
[4] 傅博, 李文辉, 陈博, 等. 基于加权光流能量的异常行为检测[J]. 吉林大学学报: 工学版, 2013(6): 1644-1649.
[5] Zhen X T, Shao L. A local descriptor based on Laplacian pyramid coding for action recognition[J]. Pattern Recognition Letters, 2013, 34(15): 1899-1905.
[6] Guo K, Ishwar P, Konrad J. Action recognition using sparse representation on covariance manifolds of optical flow[C]// 2010 7th IEEE International Conference on Advanced Video and Signal Based, AVSS 2010. Boston, MA, United States: IEEE Computer Society, 2010: 188-195.
[7] Chaudhry R, Ravichandran A, Hager G, et al. Histograms of oriented optical flow and binetcauchy kernels on nonlinear dynamical systems for the recognition of human actions[C]// 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops: CVPR Workshops 2009. Miami, FL, United states: IEEE Computer Society, 2009: 1932-1939.
[8] Li W Q, Zhang Z Y, Liu Z C. Action recognition based on a bag of 3d points[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops: CVPR Workshops 2010. San Francisco, CA, United states: IEEE Computer Society, 2010: 9-14.
[9] 王乔, 雷航, 郝宗波. 基于整体能量模型的异常行为检测[J]. 计算机应用研究, 2013, 29(12): 4782-4785.
[10] Tom M, Venkatesh B R. Rapid human action recognition in H. 264/AVC compressed domain for video surveillance[C]// 2013 IEEE International Conference on Visual Communications and Image Processing, IEEE VCIP 2013. Kuching, Sarawak, Malaysia: IEEE Computer Society, 2013: 1-6.
[11] Mota V F, Perez E A, Maciel L M, et al. A tensor motion descriptor based on histograms of gradients and optical flow[J]. Pattern Recognition Letters, 2014, 39: 85-91.
[12] Tang X Q, Xiao G Q. Action Recognition Based on Maximum Entropy Fuzzy Clustering Algorithm[M]. Foundations of Intelligent Systems.[S.1.]: Springer Berlin Heidelberg, 2014: 155-164.