[1] Alzer H. A characterization of Euler s constant[J]. Expositiones Mathematicae, 2013, 31(4): 385-391.
[2] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[M]. New York: Dover Publications, 1965: 253-294.
[3] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Special Function in Geometric Function Theory[M]. Elsevier B V, 2005: 621-659.
[4] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Mappings[M]. New York: John Wiley & Sons, 1997: 32-47.
[5] Klain D A, Rota G C. A continuous analogue of Sperner s theorem[J]. Communications Pure Appl Math, 1997: 205-223.
[6] Borgwardt K H. The Simplex Method, a Probabilistic Analysis[M]. New York: Springer Verlag, Berlin, 1987.
[7] Ma X Y, Chu Y M, Wang F. Monotonicity and inequalities for the generalized distortion function[J]. Acta Mathematica Scientia, 2013, 33B(6): 1759-1766.
[8] Ma X Y, Qiu S L, Zhong G H, et al. Some inequalities for the generalized linear distortion function[J]. Appl Math J Chinese Univ, 2012, 27(1): 87-93.
[9] Ma X Y, Wang M K, Zhong G H, et al. Some inequalities for the generalized distortion functions. Math Ineq Appl, 2012, 24(4): 941-954.
[10] Qiu S L, Vuorinen M. Some properties of the gamma and psi functions with applications[J]. Mathematics of Computation, 2004, 74(250): 723-742.
[11] Qi F. Bounds for the ratio of two gamma functions. Journal of Inequalities and Applications. 2010. [2014-03-05].http://downloaols.hindawi.com/journals/jia/2010/493058.pdf.
[12] Aderson G D, Qiu S L. A monotoneity property of the Gamma function[J]. Proc Amer Math Soc, 1997, 125 (11): 3355-3362.
[13] Zhang X M, Xu T G, Situ L B. Geomeric convexity of a function involving Gamma function and applications to inequality theory[J]. J Inequal Pure and Appl Math, 2007, 8(1): 1-9
[14] Batir N. Inequalities for the gamma function[J]. Archiv der Mathematik, 2008, 91(6): 554-563.
[15] 张小明, 褚玉明. 解析不等式新论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2009.
[16] Niculescu C P. Convexity according to the geometric mean[J]. Math Inequal Appl, 2000, 2(2): 155-167.