[1] Hoang Q P, Duc T D. A nonlinearly backward heat problem: uniqueness, regularization and error estimate[J]. Applicable Analysis, 2006, 85(6-7): 641-657.
[2] Jarny Y, Ozisik M N, Bardon J P. A general optimization method using adjoint equation for solving multidimensional inverse heat conduction[J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2911-2919.
[3] Marbán J M, Palencia C. A new numerical method for backward parabolic problems in the maximumnorm setting[J]. SIAM Journal on Numerical Analysis, 2002, 40(4): 1405-1420.
[4] 葛美宝, 徐定华. 一类热传导方程逆时反问题的数值解法[J]. 浙江师范大学学报, 2011, 34(1): 59-63.
[5] Xiong X T, Fu C L, Qian Z. Two numerical methods for solving a backward heat conduction problem[J]. Applied Mathematics and Computation, 2006, 179(1): 370-377.
[6] 曾苏华, 徐定华. 一类非线性抛物型方程扩散系数及初始分布同时反演的变分伴随方法[J]. 江西科学, 2007, 25(5): 598-602.
[7] Xu D H, Zhang H L. Uniqueness and stability estimates for a semilinearly parabolic backward problem, boundary value problems, integral equations and related problems[C]//Singapore: Proceedings of the 3rd International Conference, 2011: 140-153.
[8] Shidfar A, Fakhraie M, Pourgholi R, et al. A numerical solution technique for a one dimensional inverse nonlinear parabolic problem[J]. Applied Mathematics and Computation, 2007, 184(2): 308-315.
[1]徐定华,程建新. 纺织材料厚度设计反问题[J].浙江理工大学学报,2011,28(01):6.
XU Ding hua,CHENG Jian xin. An Inverse Problem of Thickness Design for Textile Material[J].Journal of Zhejiang Sci-Tech University,2011,28(自科3):6.