|本期目录/Table of Contents|

[1]许学飞,苏琪映,徐友峰,等. 高分散Pt/C催化剂的制备及其电化学性能研究[J].浙江理工大学学报,2012,29(06):804-807.
 XU Xue fei,SU Qi ying,XU You feng,et al. Synthesis and Electrochemical Property of HighDispersed Pt/C Catalysts[J].Journal of Zhejiang Sci-Tech University,2012,29(06):804-807.
点击复制

 高分散Pt/C催化剂的制备及其电化学性能研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第29卷
期数:
2012年06期
页码:
804-807
栏目:
(自科)纺织与服装工程
出版日期:
2012-12-28

文章信息/Info

Title:
 Synthesis and Electrochemical Property of HighDispersed Pt/C Catalysts
文章编号:
16733851 (2012) 06080404
作者:
 许学飞 苏琪映 徐友峰 王騊 王晟
 浙江理工大学先进纺织材料与制备技术教育部重点实验室, 杭州 310018
Author(s):
 XU Xuefei SU Qiying XU Youfeng WANG Tao WANG Sheng
 The Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Zhejiang SciTech University, Ministry of Education, Hangzhou 310018, China
关键词:
 Pt/C 纳米粒子 电化学性能 催化剂 高分散
分类号:
TQ426.8
文献标志码:
A
摘要:
    以氯铂酸(H2PtCl6·6H2O)为铂源,以PEG(聚乙二醇,聚合度为227)为还原剂,采用水热法制得高分散Pt/C催化材料。使用TEM、XRD及EDS对其进行了表征,并对催化剂的电化学活性面积进行循环伏安法研究。结果表明:通过调节反应条件可以得到高分散Pt/C催化剂,Pt粒子粒径约为5 nm,尺寸均一;Pt/C催化剂的分散性越好,其电化学性能就越高。

参考文献/References:

 [1]Chupas P J, Chapman K W, Grey C P, et al. Watching nanoparticles grow: the mechanism and kinetics for the formation of TiO2supported platinum nanoparticles[J]. J Am Chem Soc, 2007, 129(10): 1382213824.
[2] Shiju N R, Guliants V V. Recent developments in catalysis using nanostructured materials[J]. Appl Catal General, 2009, 356: 117.
[3] Subhramannia M, Pillai V K. Shapedependent electrocatalytic activity of platinum nanostructures[J]. J Mater Chem, 2008, 18: 58585870.
[4] Liao S, Holmes K, Tsaprailis H, et al. High performance Pt/Ru catalysts supported on carbon nanotubes for the anodic oxidation of methano[J]. J Am Chem Soc, 2006, 128(11): 35043505.
[5] Rigsby M A, Zhou W P, Lewera A, et al. Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru[J]. J Phys Chem C, 2008, 112(39): 15595V15601.
[6] Peng Z M, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, 〖JP3〗nanostructure and electrocatalytic property[J]. Nano Today, 2009, 4(2): 143164.
[7] Manthiram A, Murugan A V, Sarkar A, et al. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Energy Environ Sci, 2008, (1): 621638.
[8] Antolini E. Visualization of the local catalytic activity of electrodeposited PtAg catalysts for oxygen reduction by means of SECM[J]. Appl Catal B, 2007(74): 324326.
[9] Liao H G, Jiang Y X, Zhou Z Y, et al. Shapecontrolled synthesis of gold nanoparticles in deep eutectic solvents for studies of structurefunctionality relationships in electrocatalysis[J]. 〖JP3〗Angew Chem Int Ed, 2008, 47(47): 91009103.
[10]Zhou Z Y, Tian N, Huang Z Z, et al. Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method[J]. Faraday Discuss, 2008, 140: 8192.
[11] Narayanan R, ElSayed M A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability[J]. J Phys Chem B, 2005, 109(26): 1266312676.
[12] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with highindex facets and high electrooxidation activity[J]. Science, 2007, 316: 732735.
[13] Mahmoud M A, Tabor C E, ElSayed M A, et al. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal[J]. J Am Chem Soc, 2008, 130: 45904591.
[14] Wang C, Daimon H, Sun S H, et al. A general approach to the size and shapecontrolled synthesis of platinum nanoparticles and their catalytic reduction of oxygen[J]. Angew Chem, 2008, 120: 36443647.
[15] Byungkwon L, Majiong J, Pedro H C, et al. PdPt bimetallicnanodendrites with high activity for oxygen reduction[J]. Science, 2009(324): 13021305.
[16] Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing[J]. Adv Mater, 1999, 11(15): 13071311.
[17] 李文震, 周振华, 周卫江, 等. 直接甲醇燃料电池阴极Pt/C催化剂的制备与表征制备及处理方法的影响[J]. 催化学报, 2003, 24(6): 465470.
[18] 曾汉民. 高技术新材料要览[M]. 北京: 中国科学技术出版社,1993: 676678
[19] 刘卫锋, 胡军, 衣宝廉, 等. Pt/C催化剂的制备与评价[J]. 电源技术, 2005(29): 431433.

相似文献/References:

[1]陈智杰a,赵晓丽a,徐畅b,等. 有机颜料微胶囊在涂料染色中的应用及其染色效果分析[J].浙江理工大学学报,2013,30(01):1.
 CHEN Zhi jiea,ZHAO Xiao lia,XU Changb,et al. Application of Organic Pigment Microcapsule in Pigment Dyeingand Its Dyeing Results[J].Journal of Zhejiang Sci-Tech University,2013,30(06):1.
[2]詹永娟,谢维斌,姜晓云,等. 织物液态水传递性能的自动检测技术及应用[J].浙江理工大学学报,2013,30(01):6.
 ZHAN Yong juan,XIE Wei bin,JIANG Xiao yun,et al. Technology and Application of the Automatic Detection inTesting Liquid Transport Properties of Textiles[J].Journal of Zhejiang Sci-Tech University,2013,30(06):6.
[3]孙麒. 基于极大似然估计的织物图像分割[J].浙江理工大学学报,2013,30(01):12.
 SUN Qi. Textile Image Segmentation Based on theMaximum Likelihood Algorithm[J].Journal of Zhejiang Sci-Tech University,2013,30(06):12.
[4]巫静a,田彦杰b,汪澜a,等. 基于SVM理论的涤纶织物分散染料上染率模型研究[J].浙江理工大学学报,2013,30(01):21.
 WU Jinga,TIAN Yan jieb,WANG Lana,et al. Research on Modeling of DyeUptake Rate for Disperse Dyes onPolyester Fibers Based on SVM[J].Journal of Zhejiang Sci-Tech University,2013,30(06):21.
[5]周昊,徐英莲,齐素梅.微孔结构改性涤纶/棉混纺针织物服用性能的研究[J].浙江理工大学学报,2013,30(01):21.
 ZHAO Hao,XU Ying lian,QI Su mei. Research on Using Knitted Blend Fabric of Modified Polyesterby Cellular Structure and Cotton for Wearing[J].Journal of Zhejiang Sci-Tech University,2013,30(06):21.
[6]孙佳英,李艳清,章斐燕,等. 纺织结构复合材料铺层顺序设计与力学性能分析[J].浙江理工大学学报,2013,30(01):27.
 SUN Jia ying,LI Yan qing,ZHANG Fei yan,et al. Study on Layer Sequence Design and Mechanical Propertiesof Textile Structure Composites[J].Journal of Zhejiang Sci-Tech University,2013,30(06):27.
[7]丁源维,王騊,姚菊明,等. 静电纺制备TiO2/PVA复合纳米纤维及其光催化性能研究[J].浙江理工大学学报,2013,30(01):31.
 DING Yuan wei,WANG Tao,YAO Ju ming,et al. Photocatalytic Performance Investigation of TiO2/PVANanofibers Prepared by Electrospinning[J].Journal of Zhejiang Sci-Tech University,2013,30(06):31.
[8]章梦洁,伍仲,方园. 涤棉混纺织物阻燃性能的实验分析[J].浙江理工大学学报,2013,30(01):36.
 ZHANG Meng jie,WU Zhong,FANG Yang. Experimental Study on the PolyesterCotton BlendedFabrics Flame Retardancy[J].Journal of Zhejiang Sci-Tech University,2013,30(06):36.
[9]胡觉亮a,孔云鹏b,韩曙光a,等. 基于随机需求的服装供应链回购契约研究[J].浙江理工大学学报,2013,30(01):40.
 HU Jue lianga,KONG Yun pengb,HAN Shu guanga,et al. Study on Repurchase Contract in a Fashion Chainwith the Stochastic Demand[J].Journal of Zhejiang Sci-Tech University,2013,30(06):40.
[10]毛雯,阎玉秀. 针织服装供应商评价指标体系构建与权重确定[J].浙江理工大学学报,2013,30(01):46.
 MAO Wen,YAN Yu xiu. Building Evaluation Index System for Knitting Clothing Suppliersand Determining the Weight[J].Journal of Zhejiang Sci-Tech University,2013,30(06):46.

备注/Memo

备注/Memo:
 收稿日期: 2012-05-31
基金项目: 国家自然科学基金(31070888,50802088,21103152);浙江省杰出青年科学基金(R2101054);浙江省自然科学基金资助项目(Y4080392,Y406285),浙江理工大学材料科学与工程研究生教育创新示范基地(项目编号3)
作者简介: 许学飞(1987-),男,河南商城人,硕士研究生,主要从事纳米催化剂的研究。
通讯作者: 王晟,Email:wangsheng571@hotmail.com
更新日期/Last Update: