|本期目录/Table of Contents|

[1]裘松良,丁志栓,王婕.(p,q)-Grotzsch环函数与(p,q)-Hübner函数的一些性质[J].浙江理工大学学报,2020,43-44(自科六):846-851.
 QIU Songliang,DING Zhishuan,WANG Jie.Some properties of the  (p,q) Grtzsch ring  function and  (p,q) Hübner function[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科六):846-851.
点击复制

(p,q)-Grotzsch环函数与(p,q)-Hübner函数的一些性质()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科六期
页码:
846-851
栏目:
出版日期:
2020-11-27

文章信息/Info

Title:
Some properties of the  (p,q) Grtzsch ring  function and  (p,q) Hübner function
文章编号:
1673-3851 (2020) 11-0846-06
作者:
裘松良丁志栓王婕
浙江理工大学理学院,杭州 310018
Author(s):
QIU Songliang DING Zhishuan WANG Jie
School of Science,Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
完全(pq)椭圆积分(pq)Grtzsch环函数(pq)Hübner函数单调性凹凸性不等式
分类号:
O174-6
文献标志码:
A
摘要:
 对于 r∈(0,1), 通过揭示由第一类完全( p,q )椭圆积分定义的( p,q )Grtzsch环函数 μ~p,q(r)和(p,q )Hübner函数 p,q(r)以及初等函数定义的一些组合的单调性、凹凸性,给出了μ~ p,q(r)与p,q(r)的一些性质,从而将Grtzsch环函数和Hübner函数的一些已知结果推广到μ p,q(r)和p,q(r)。

参考文献/References:

[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. New York: Dover, 1966: 556-607.
[2] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley & Sons, 1997: 3-31.
[3] Takeuchi S. Legendretype relations for generalized complete elliptic integrals[J]. Journal of Classical Anaiysis, 2016, 9(1): 35-42.
[4] Edmunds D E, Gurka P, Lang J. Properties of generalized trigonometric functions[J]. Journal of Approximation Theory, 2012, 164(1): 47-56.
[5] Kamiya T, Takeuchi S. Complete (p,q)elliptic integrals with application to a family of means[J]. Journal of Classical Analysis, 2017, 10(1): 15-25.
[6] Jiao R B, Qiu S L, Ge G T. Monotonicity and convexity properties of the generalized (p,q)elliptic integrals[J]. Journal of Zhejiang SciTech University, 2018, 39(6): 765-769.
[7] 焦仁兵. 两类广义椭圆积分的若干性质[D]. 杭州: 浙江理工大学, 2018: 9-27.
[8] Ahlfors L V. Lectures on Quasiconformal Mappings[M]. 2nd ed. New York: University Lecture Series Vol 38 American Mathematical Society, Providence, R I, 2006: 1-83.
[9] Anderson G D, Qiu S L, Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific Journal of Mathematics, 2000, 192(1): 1-37.
[10] Berndt B C, Bhargava S, Garvan F G. Ramanujan’s theories of elliptic functions to alternative bases[J]. Transactions of the American Mathematical Society, 1995, 347: 4163-4244.
[11] Qiu S L, Vuorinen M. Infinite products and normalized quotients of hypergeometric functions[J]. SIAM Journal on Mathematical Analysis, 1999, 30(5): 1057-1075.

备注/Memo

备注/Memo:
收稿日期:2020-07-01
Published Online:2020-09-04
基金项目:This research is supported by the NSF of P. R. China (Grant No. 11771400)
作者简介:QIU Songliang (1957-),male, Fuyang, Zhejiang, Professor; research interests: quasiconformal theory, special functions, Ramanuian’s modular equations,etc.; E-mail: sl_qiu@zstu.edu.cn.
更新日期/Last Update: 2020-11-05