|本期目录/Table of Contents|

[1]周宸,林文博,王勇军,等.黏性流体中气泡上升运动行为的实验研究[J].浙江理工大学学报,2021,45-46(自科六):780-785.
 ZHOU Chen,LIN Wenbo,WANG Yongjun,et al.Experimental study on the upward motion of bubbles in viscous fluids[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科六):780-785.
点击复制

黏性流体中气泡上升运动行为的实验研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第45-46卷
期数:
2021年自科第六期
页码:
780-785
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Experimental study on the upward motion of bubbles in viscous fluids
文章编号:
1673-3851 (2021) 11-0780-06
作者:
周宸林文博王勇军张先明陈世昌陈文兴
浙江理工大学纺织纤维材料与加工技术国家地方联合工程实验室,杭州 310018
Author(s):
ZHOU Chen LIN Wenbo WANG Yongjun ZHANG Xianming CHEN Shichang CHEN Wenxing
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
黏性流体高速摄影法气泡运动行为聚结
分类号:
O357-1
文献标志码:
A
摘要:
为了探究气泡在黏性流体中的运动变化从而进一步研究起泡脱挥机理,采用高速摄影法测定了气泡在静置流体中的上升运动行为及其形变特性,考察气泡在上升运动过程中脱离时间、等效脱离直径、瞬时速度及纵横比等参数的变化,并分析气泡在不同进气流量下的运动轨迹及聚结、分离过程。研究表明:在黏性流体中气泡的运动轨迹趋于直线型上升,相较于水中的“S”型上升轨迹更加稳定;在高流量下气泡在水中呈现双气泡、三气泡聚集态,而在黏性流体中进气流量达到0.6 L/min时气泡才出现聚结现象。随着进气流量增加,气泡脱离时间减小,脱离孔口时直径增大,同时瞬时速度增加。通过观察气泡上升运动行为能够为起泡脱挥理论分析提供一定的实验基础。

参考文献/References:

[1] Li X, Wang W, Zhang P, et al.. Interactions between gasliquid mass transfer and bubble behaviours[J]. Royal Society Open Science, 2019,6(5): 190136.
[2] Aboulhasanzadeh B, Tryggvason G. Effect of bubble interactions on mass transfer in bubbly flow[J]. International Journal of Heat and Mass Transfer, 2014,79: 390-396.
[3] Grace J R, Wairegi, T, Nguyen, T H. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids[J]. Transactions of the Institution of Chemical Engineers, 1976, 54(3): 167-173.
[4] Kang C, Zhang W, Mao N, et al. Effects of the wake flow on bubble patterns downstream of a cylindrical nozzle[J]. Chemical Engineering Research and Design, 2019, 145: 128-140.
[5] 薄宇轩, 吴晅, 马骏, 等. 气泡在静水中上升行为特性可视化实验研究[J]. 水动力学研究与进展(A辑), 2020, 35(6): 743-749.
[6] Wang S P, Zhang H, Liu Y L, et al. Bubble dynamics and its applications[J]. Journal of Hydrodynamics, 2018, 30(6): 975-991.
[7] Iwata S, Saiki Y, Nagumo R, et al. Experimental investigation of a rising bubble in aqueous gelatin solution under gelation process[J]. Nihon Reoroji Gakkaishi, 2018,46(3): 107-115.
[8] Sattari A, Hanafizadeh P. Bubble formation on submerged micrometersized nozzles in polymer solutions: An experimental investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564: 10-22.
[9] Xu F S, Midoux N, Li H Z, et al. Characterization of bubble shapes in nonnewtonian fluids by parametric equations[J]. Chemical Engineering and Technology, 2019, 42(11): 2321-2330.
[10] Zhao Y, Xu Z, Wang B, et al. Scale inhibition performance of sodium carboxymethyl cellulose on heat transfer surface at various temperatures: Experiments and molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2019, 141: 457-463.

备注/Memo

备注/Memo:
收稿日期:2021-02-10
网络出版日期:2021-03-31
基金项目:国家自然科学基金项目(51803187)
作者简介:周宸(1996-),男,浙江诸暨人,硕士研究生,主要从事聚合反应工程方面的研究
通信作者:陈世昌,E-mail:scchen@zstu.edu.cn
更新日期/Last Update: 2021-11-24