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Some functional inequalities for the generalized Grotzsch function
LIN Jie, ZHANG Xiaohui
(School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract: By investigating the monotonicity and concavity and convexity of some special functions
involving the complete (p,q)-elliptic integral, the (p,q)-Grétzsch function P (), and some elementary
functions, the authors presented some sharp elementary approximations and functional inequalities for the
(p . q)-Groétzsch function, thus promoting and improving several well-known results for the classical
Grétzsch function, such as the property of geometric-harmonic concavity and the logarithmic singularity at

= 0. These approximations and inequalities can be applied to the estimation of generalized distortion
functions and the study of Ramanujan’s modular equations.
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0 Introduction

For given real numbers a ,b and ¢ with ¢5%0,—1,—2---,

N (a,n)b,n) "
2F1(a’bv091) = 2 SN RS S

n=0 <C7n) n !

is the classical Gaussian hypergeometric function, where (a,0)=1 for a0, and (a,n)=a(a+1) (a+2)

, ‘I‘<1

-(a+n—1) for positive integer n.
For p,q& (1,00) and » € (0,1), the generalized (p,q)-elliptic integrals can be represented by the

Gaussian hypergeometric function'! ;
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_ T 11 1 1
K/).q7K/:.q(r)772F1<1_;’;’1_;+;;r1>’
K’p.q :K;J.(,(r) :K,‘P’q(r/)v

Tpa
k,,0)= 5 e, (1) =00
and

Ly p (Ll 111
€y =6, (D =5 F ()
s;).q—s;hq(r):ep.q(r’),

T
e,, (0 =—3te, (D=1

Here and hereafter, we always let r =(1—7r9)"4, It is easy to see that K, is strictly increasing and €, is

strictly decreasing on (0, 1), respectively. The generalized (p,¢)-elliptic integrals satisfy the following
beautiful Legendre relation in Corollary 1.2 in [ 2]

, ’ ! i 4
Kp,q(r)sp,q(r) —|—,€p‘q(r)epvq(r) */cp_q(r)/cp'q(r) :% (D

For p = q = 2, the generalized (p, q)-elliptic integrals reduce to the classical complete elliptic
integrals, respectively. It is well known that the complete elliptic integrals have an important role in
several branches of mathematics, such as special function theory and number theory, as well as in physics
and engineering. Numerous properties have been obtained for ¢ and e (for instance, cf. [3—7]). However,

only a few basic properties of the generalized (p,q)-elliptic integrals «,,ande have been revealed™? .

V.
It is natural to ask whether the known properties of ¥ and e can be extended to the generalized functions

and .
Kﬁeq 5/M/

We define three related functions p,,om, M as follows: for p, g€ (1,00) and r&(0,1),
T, Kk, (r)
#P,q(r) :% . 1 -(I(r):

K ’q(r) ?

T
4 bsq
For p=q=2, these functions reduce to well-known special cases. The function p(r) =y, , (1) is the

re (e (rH M (r)=m
Psq psq Psq

’q(r)Jrlogr (2)

P

modulus of the Grétzsch ring domain in the plane, which has numerous applications in the conformal
invariants and the theory of quasiconformal mappings®*. The classical modular equations can also be
represented by the Grotzsch ring function p (), In the monograph [3], the authors presented many
sharp elementary approximations and elegant functional inequalities for the Grétzsch function by studying
monotonicity and convexity properties of functions involving the Grétzsch function.

The purpose of this paper is to extend some well-known results for the function x4 (r) to the
generalized function t,, () by investigating some monotonicity and convexity properties of certain
combinations defined in terms of the generalized (p,q)-elliptic integrals, the generalized Grétzsch ring

function 2y, (1) and some elementary functions. Our main results are stated in the next section.

1 FEHZR

1 Main results

Throughout this paper, we always set p,g>1, a=1—1/p, b=1/q, c=a+b, d=(p—2+
VEipt—8p+4)/2(p—1)), D=Q2p—3+/8p*—16p+9)/(2(p—1)). Let y=0.577215++ be the Euler

constant and ¢ be the classical psi function, and let
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R(a0) =—2y —¢(a) —¢),R(a) =R(a,1—a),R(1/2) =loglé.

In this section, we state our main results which show some monotonicity and convexity properties of
some functions involving the generalized Grétzsch function, and obtain some sharp functional inequalities
for the generalized Grotzsch function.

Our first theorem extends the results of Theorem 1.2 in [11].

Theorem 1 a) When ¢q=(3p—4)/(p—1), the function h, (r)= (r/‘“/zlup’q (r))/log(1/r) is strictly
increasing from (0,1) onto (1,00),

b) When g=d . the function £, (r) =, (r)/(bR (a,b)+log(1/r)) is strictly decreasing and concave
on (0,1) with range (0,1).

¢) When ¢=(3p—4)/(p—1), the function h,(r)=h, (r)/r?" is strictly increasing from (0,1) onto
(1,90). Moreover,

(bR (a ,b) — logr)r /! </,¢M(r) < bR (a,b) —logr.
Theorem 2 a) If and only if p=>3/2 and ¢<<(3p —4)/(p— 1), g, (1) =p, (r)+log(r/V/r") is

strictly increasing and convex on (0,1) with range (bR (a,b), o).
b) For 0<r<1/2Y¢ g, (r):(/zM (r)*n'p_q/Z)/log(r/r/) is decreasing from (0,1/2"¢) onto (nM/A,l) ,
where A=l (1/2Ya )Z/NM. In particular, for all 0<r<C1/2"¢,

/7

T g Thagog(T) < (< 20 4 hog()

and for all 1/2V1<r<1,

2 2
T T

b.q b.q
1Gr, J2FlogG /e o S G 2t (e, A loglr /0y
¢) When ¢q=(3p—4)/(p—1), the function gs(r):pM(r)log(l/(l—rq,&)) is increasing from (0,1)
onto (0, qrri.q/ﬂf). In particular, for all 0<r<Z1,

2
b.q

< .
T 4log(1/(1—r7%))
The following Theorem 3 and Theorem 4 are extensions of Theorem 1. 3 in [11] and Theorem 1. 28 in

qr

;zp_q(r)

[12], respectively.
Theorem 3 a) The function G, (r) =r,., (1/r) is strictly increasing and concave from (1,c0) onto

(0,00). In particular, for x,y,A € (0,1),

Ty
A, O+ A=Dp, (D) <<p, <;M—_m)

with equality if and only if x=1y.

b) For each 1€ (0,1), the function G, (”):#,),,, (rt/(l-’-z‘/))*lap.q (r) is strictly increasing from (0,
1) onto (artht , /up_q(t/(1+t/))). Moreover, for r,t€(0,1),

p,, ) tarthe <p Gt/A+0) <p, G Ap, /A1),

¢) The function G, H=pu,. (r)/;zM (/r) is strictly decreasing from (0,1) onto (1,2). In particular,

for all p,¢g>1 and r& (0,1,
v, ) <g, () <2, ().

Theorem 4 a) The function H (r)=(r"logr’)/(r logr))/up_q (r) is strictly increasing from (0,1)

onto (l/q,qn-i.q/ll). In particular, for all »€ (0,1),

1 r'logr
q rlogr

”1)«1) * rilogr
2
b) When q}Z,Hz(r):((r/’”/z arthr("”z)/(r"’?arthr/"/z))/xﬁ_q (r) is strictly increasing from (0,1) onto

/</1/w(r)<q<

rilogr ’
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(2/q, qn'i’q/8). In particular, for all & (0,1),
2 r?? arthr ? Ui ) © i arthr 9

q ( peq
q r"*arthr?? <#P"1( )< 2\ 2 r 7% arthre/?

2 HEFEM

2 Preliminary and derivatives

The following two lemmas are very useful in proving monotonicity of the ratio of two functions or two
series, and Lemma 1 and Lemma 2 are from Theorem 1. 25 in [3] and [13], respectively.

Lemma 1 Let —co<laq<lb<-tco, and f,g:[a.b =R be continuous functions defined in [a,6] and
differentiable in (a,b), and suppose that g’ (x)70 on (a,b). If f'(x)/g’(x) is increasing (decreasing,
respectively) on (a,b), then so are the functions

. e oy — (b
e ™ ) ®
If f'(x)/g’(2) is strictly monotone, then the monotonicity of the functions in (3) is also strict.
Lemma 2 Let r ands for n €N be real numbers, and suppose that the power series

f(I):Za”x” and g(I)ZZ/)”I”

n=0 n=0
are both convergent for x € (—1,1). If b >0 for all » € N and if a /b is strictly increasing (or
decreasing, respectively), then the function f(x)/g(x) is strictly increasing (or decreasing, respectively)
on (—1,1).
The functions K, and €, satisfy a system of differential equations’;
_ _
dKPeq :epsq r KP-,q de/hq :q(epsq Kﬁ~t1) (4)

7 )
dr rr? dr pr

From (4), we have the following derivative formulas:

de  — 7y )7(P*(1)(/cp_ —e )JFP(Q*l)rqK:p_

b.q Psq q bq q
dr pr (5)
de, , —e, ) (P —arde, +(@—p)r'eVp.q
o ! (6)
dr prrt

By the definitions (2), and the derivative formulas (4), we obtain the derivative formulas for the functions

Yo and m, as the following lemma shows.
Lemma 3 Let p,¢g>1, for 0<r<1,

d (r) 7’
#p.q _ /’:‘1 > (7)
dr —4rrig
P-q
dn,, (O 14 (1_&) (8
d?" r T Psq Peq 2 TqIC
pea pra

Lemma 4 For r,t&(0,1), we have the following conclusions:

a) The function f (r)=r"k
(q(p—1)/(q(p—D+p).

b) The function f2(r):(e/)_q(r)*r/‘]/cp’q(r))/(rq/cp’q(r)) is strictly decreasing from (0,1) onto (0,
(qp—1)/(q(p—D+p).

©) The function f,(r)=x
q,n'p_q/Z).

d) The function f, (r):(ep’(l(r)—r,"/cp’él(r))/(/cp.q (r) —e, () is strictly decreasing from (0, 1)

P_q(r) is strictly decreasing from (0,1) onto (0, ”p,q/Z) if and only if c=

. (r)+logr is strictly decreasing and concave from (0,1) onto (R(a.b)/
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onto (0,q(p—1)/p).
e) When q>2,f5(r):arthr""/z/(r"”?/cM(r)) is strictly increasing from (0,1) onto (2/x, .q/2).
f) The function fﬁ(r):r,"’/2 exp(qr";c/w (r)/(Z(ep_q*r,‘lxp‘q (r)))) is strictly decreasing from (0,1)

onto (exp(R(a,b)/2),exp((qg(p—1))/(q(p—1D+p))).
g Let c=1.f. (r) =« L) /log(c/r??) is strictly decreasing if ¢<Cexp(R (a.b)/2) and strictly

increasing if c‘}exp((q(p—p1)+‘p)/(2(p—l))). In particular, «, (r)/log(c/r ) lies between ¢/2 and
rrp’q/(Zlogc).

Proof The proof of (a)—(d) can be referred to [ 14].
e) Let [ (r)=arthr?? ,fsz(r):r"’/zfcp'q(r) » then /. (0)=f_(0)=0 and

AN C) - 1
£, 2, /Jq+ 1 — 2/q>,'q,cp.q.

When ¢=2, the monotonicity of f_(r) follows from Lemma 4 (a). Clearly, f (1" )=q/2, f (07)=

2/7T/).(1'
f) Let
o 1 , qrqlc) q
GG =log(f,(r) =T | [ —
2 Z(e[w 77’(1’%.(1)
By differentiation, it follows from (4) and (5) that
C :C]r" IKP’([(])(SP’Q —r/”/cp_”) —/q(p — 1)(/cp’([ —sM))
2p (EM —r"/cp.q)z ’
Let
For) — pate, —r'%, ) _ » €,, Tk,
(pfl)qz(/cp_q*spvq) q(p — 1 K, "€, ’
r/q/cp’q)<

Then F(r) is strictly decreasing from (0,1) onto (0,1) by Lemma 4(d) and hence p (e, .~
_q). Therefore, G (+r)<0, and the monotonicity of G(r) follows. Consequently, we see

q(p—Dk, —e,
the monotonicity of f (+). The limiting values follow from Lemma 4(c)
ri (k. +logr) )
( Psq ” + (1 — 7’4) logr )
—ri e, —ri%
bq g bsq

lim 2 log(f,(r) = lim
r—1 q r—1 sp'q

Ra,b) | .. . . ,
= Jrrlirln ,,— 7', —1r" logr
R(a,b) . — , ,
AN -+ lim <€ﬁ-,q o r/"fllcp )r logr .
\q

r—1

Next, by Theorem 1.19(6) in [3] and (1),
T — ,
rg —Ia+0) +b)rq7110g(1 —7r?) =0,

INCRINCY;

limr '« (r)=Ilim
r—>1- Pq r—>1- 2

then we have 1ir11}2/qlog(f'6(r)) =R(a,b)/q. Therefore
q(p —1) + P)

. -\ __ R(d?b) . N
f.a )—exp( 5 )9](6(0 )—exp< 2(p—1)

g) By differentiation,
€y Ky, log( ¢ >_ qr(H’Cp-,q
£ rr? ri’? 2r?
(r) = —
/ (log(e/r™*))* ’

/-, (r) is negative or positive according as
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. ' qrie Ra.b)
c < mf{r"”zex (—’J'," > } =ex ,
- P 2(51).(1 — r"/cp’q) p( 2 )

¢ > sup qr'e, . )}7 p<q(P*1)+P>

- _
rt exP( 2p—1)

Z(EM — r"’/cp.q )
By simple calculation, the limiting values follow from Lemma 4 (b)

g e, T, 2 2
PLf ) =lim S 2
2loge 77 r—1- rr? qr q

The following lemma shows monotonicity properties of the functions @, and m, (r), sce [14—15].

1,00 =

Lemma 5 For r& (0,1), we have the following conclusions:

a) The function fg(r):pp.q(r)+logr is strictly decreasing from (0,1) onto (0,6R (a,b)).

b) The function fory=m,

¢) The function f  (r) =m,
Moreover, if g=d . then f (r) is concave on (0,1).

d) The function fnGro=m, , b (D).

The monotonicity properties of the functions f,, f, and [, are from Theorem 2.3 in [11], Lemma
2.16(2) in [12] and Theorem 1. 4(1) in [ 16], respectively.

Lemma 6 Leta , b €(0,°0) with ¢, =a, +b, , we have the following conclusions:

a) The function f,(x)=F(a, b sc 32)/(R(a b)) —log(1—z)) is strictly decreasing from [0,1)
onto (1/B(a,, b,),1/R(a b )]

b) For 2a b <, the function S =A0—U0—0)F (a b ¢, s2)?)/x is strictly increasing from
(0,1) onto (1—(2a,b,/c,), 1.

o) Ifa b, €0,1), then [ (x)=xF(a b, ,c ;2)/log(1/(1—x)) is decreasing from (0,1) onto
(1/BCa, b)), (D).

3 EELRWIEMH

_yq(r)/log(l/r) is strictly increasing from (0,1) onto (1,00).
, () —+ logr is strictly decreasing from (0, 1) onto (0,5R (a,b)).

L) —m  (r) s strictly increasing from (0,1) onto (—logt,m

3 Proofs of main results

3.1 EIE 1 WL
3.1 Proof of Theorem 1

a) First, we observe that h (r) can be rewritten as

m, (r) 1
}l (7') — . "o 2
1 log(1/r) r?2F (a,b,c;r?)?
which is strictly increasing by LLemma 4(a) and Lemma 5(b), since
q q9(p —1
= > -
4 T qp—1D +p
Therefore, the monotonicity of 4, (r) follows and the limiting values are clear.

b) We have the derivative

2

, ™. /JR(a,b)—(m,/)’q(r)+logr)
7}12(”) - (2([)R (a ,b) —'—1og(1/r>)r,q/2lcp.q)2 -

which is a product of two positive and strictly increasing functions on (0,1) by Lemma 4(a) and Lemma 5

(¢). Hence the monotonicity of i, (r) follows. Clearly, 2,(1") =0, while the limit 2, (07) =1 follows
from Theorem 1(a).

¢) h,(r) can be written as
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1,,(r) qr,, <,
h, () = pea - bea b

b(R(a,b) —logr?) yt 2r,("’/4/cp_q R(a.b) —logr?’

The monotonicity of 2, (r) follows from Lemma 4(a) and Lemma 6(a). Moreover, the limiting values are

obvious.
3.2 7EIE 2 HYiERA
3.2 Proof of Theorem 2
a) By differentiation
2—rDF (a,b,c5r)*—2
2r79F (asbyc;ri)?
Let x=r? then g;(r):f(x)/(2xl’/"r/"F (asbsc;r))=F(2)/(2rF (asbsc;r?)?), where f(x)=(2—
F (asbic,2)?—2,F(x)=f(x)/x"". Clearly, f(07)=0,f(1 )=co, It suffices to have f (2)>>0.
We have f (x)=F(a.b,c,x)g(x) by (1.16) in [3], where

gl (r)=

g () =22 — OF(a+1.b+1.c+150) —Flasbocia).

c
Using series expansion of F(a,b,c,x), we get

g(f):(4—21)2 (a,n+1)(l),n+1)1” - Z (a,n)(b,n)xn

= (con+Dn = (c,nin
—4 A~ (a+n)b+n)(an)(b.n) ”*22 n(a,n)byn) | v (a,n)byn)
= (csn+ Dn! * ~=  (c,n)n! * = (c,nin
(a n)(b,n)

= m(ZHZJr(Z(a +b)—Dn+4ab—a—b)x".
n=0 ’ .

Since 2n*+(2(a+b)—1)n+4ab—a—b>0 for n=>1, we see that g (x) is strictly increasing on (0, 1),
Clearly, g(0")=(4ab—a—0b)/c. By Theorem 1.19(4) in [ 3] and Lemma 4(a), we find

g(1) = 2 ﬁ{%b(éL*ZI)F(a oo+ 1520) — (1 —x)F(a,b,c;x) ) =00,

a1
As the monotonicity of g (x), f(x)>>0 if and only if g (0" )==0 which is equivalent to p>3/2 and ¢=<<
(3p—4)/(p—D. Next, we prove the convexity of g, (r), let h(x)=r=x"", then F(x)= f(2)/h(x),
() =h(0)=0 and f (x)/h (x)=qx“ P "F(a.b,c.x2) g (x). Hence, we get the monotonicity and
convexity of g (r) by Lemma 5(a). Clearly, g, (17)=0o,g (07)=0bR(a.b).
b) Let g, (r) =pu L) = np’(l(r)/Z, g,,(r) = log(r'/r) , then g, (1/2Vy =g, (1/2")=0. By

p

differentiation, we have
2 ’ 2
B 7r/7~,LI ’ ( ) 1 g 21 ( r ) T q
——g. (r)=——,— = .
drr ikt 2 g, (r) Ak’
Peq == Psq

which is decreasing. Hence the monotonicity of g, (r) follows and the limiting values are clear. The second

g;l(r):

inequality follows from the identity z, (r)//p’q (r) :ni-q /4
o) We write g, (r) as g, (r) /g, (r), where g, (r)=log(1/(1—r"*)) and gsz(r)ZI/lup’q(r) , then
g, (0 =g, (0)=0. After simplifications, we get
g, G A ()
g., () B 2
which is increasing from (0,1) onto (0, gr® { /4) by Lemma 4 (a) and the limiting values are clear.
Remark For p=q=2. Theorem 2 reduggs to Theorem 1.4 in [11], Exercise 5. 68(37)—(39) in [ 3].
3.3 FEiE 3RYiERA
3.3 Proof of Theorem 3
a) Let +=1/r, then dx/dr=—x? and

b
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2 2

: - T 71 T X
G )=—F"7""——F =—7"1 .
1 dax ik () r? Az % (o)
pegq peaq

which is positive and strictly increasing in x, so decreasing in . Hence, we get the monotonicity and
concavity of G, (r), and the limiting values are clear. By the concavity of G, (r), for s, 1€ (1,2°) and A €
(0,1), we have
G Qs+ A—=01) =26, () + 1 =06, ().
Let x=1/s,y=1/t, then we have
Moy, (0 A=, 0 <y (s )
with equality if and only if x=3y.
b) Let x=rt/(1+¢"), then x<rt<r and dx/dr=2x/r,
Gy — T (:/,C/f’/ci’q () - ?’/qxi_q (r))
2 4r (x "”chp'q (I)r"”zfcp_q(r))2
which is positive by Lemma 4(a), then the monotonicity of G, (r) follows. Clearly, the limiting values are

G, =p, @/(A+1)),
G,(07) = lim{(yp,q(x) + logx) — (e, ) + logr) +log((1+1¢")/t)} =artht’.

r—0+

¢) Let x=vr , then x<<r.dx/dr=1/(2x), we have the derivative
™ (m,  (r)—2m, (x))
G (r) _ ,)_(,/ . Psq , — Psq .
8 8r (2 /cM(x )r”"/cp,q(r))
which is negative by Lemma 5(d). By Ramanujan's asymptotic formula'™ B (a,sb)D)FCa, b sc 5r)+
log(1—r)=R(a,.b ) +O(1—r)log(1—r)) as r—=>1", then we have

N ) Flasbsc;r®) . logr?
0 =] — — — =2,
G, (07 s Fla.b,c;1—r?%) e logr?*
Flasbsc;r??) . log(1—r7%) _

G, d ):,-h—lrrl Flasb,sc;r?) :rh}lr} log(1 —7r7)

3.4 7EIE 4 HYiERR
3.4 Proof of Theorem 4
a) We write H (r) as
Tyo riF(asb,esr®)  log(1/r)
2 log(1/7%) riF(asbyc3r?)’
Hence, Theorem 4(a) follows from Lemma 6(c).
b) We write H,(r) as

H ()=

, a2
ﬂ/).([ arthrq/z r K/),q(r)

2 r"’/zlcp_q(r) arthr 9/

Hence, Theorem 4(b) follows from Lemma 4(e).

H,(r) =

SE Wk
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