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Some properties of zero-balanced hypergeometric functions
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Abstract: In this paper, the authors obtain several monotonicity properties and sharp
inequalities for the zero-balanced hypergeometric function F(a.b;a + b;x). by studying the
analytic properties of certain combinations defined in terms of F(a.,b;a + bj;x) and some
elementary functions such as trigonometric functions, thus extending several known related results
for the complete elliptic integrals of the first kind to zero-balanced hypergeometric functions.
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0 Main Results

For real numbersa.b,c(c 7% 0, —1, — 2,++) the Gaussian hypergeometric function is defined by

Flasbic;a2) =F ,(asbic;0) = Z

2 e
where (a,0)=1fora # 0, and forn=1,2,+, (a,n) =a(a+1)+-(a+n—1) is the shifted factorial function.

The function F(a,b;c;x) is said to be zero-balanced if c = a + 6. It is well known that F(a ,b;c;x) has wide

(a,n)b,n) x"

—, lx|<1 (D
n

important applications in many fields of mathematics, and in physics and engineering as well [ 1-4 |. For the
properties and applications of the hypergeometric functions, the readers are referred to [1, 3, 5-8].

It is also well known that many other special functions in mathematical physics are particular or
limiting cases of F(a,b;c;x). For example, the generalized complete elliptic integrals of the first kind are

defined as
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K, =K, (r) :§F<a,1—a;l;ﬁ),K“’:K’a(r) =K, (),

forr € (0,1),7'=y/1—17r% and fora € (0,1/2], while K=K(r)=K,,(r) and K=K’ (+) =K', (+) are
the well-known complete elliptic integrals of the first kind (cf. [1, 2, 9-10]). Clearly, K,(0) ==/2 and
K, (1) =oco,

For real numbers x .y € (0,00), the gamma, beta and psi (digamma) functions are defined by

() :fxfﬂe*' de
T(OT(y)
IB(x,y) =227
) = R 2)
I (z)
¢(x) = '(x)

respectively (cf. [1, 4]). Clearly, (ayn) =T'(n+a)/T'(a). Let

y = lim(Z L ogn ) =0, 577125664+,

e P
be the Euler-Mascheroni constant, and fora.,b € (0,c0), let
Ra.b) =—2y — ¢(a) — ¢(b) (3)

which is called the Ramanujan constant or Ramanujan R-function and plays an important role in the studies of
hypergeometric and quasiconformal special functions (cf. [7-117]). Clearly, R(1/2,1/2) = logl6.

Throughout this paper, for convenience, we let
B=B(a,b),R=R(a,b),B,=B(a+1,b6+1),R.=Ra+1,b6+1),a=ab/(a+b),
F(x)=F(a,bsa +b;x),G(x)=F(a,bsa+b+1;x),F, (x)=FCa+1,0+13a+b+2;:x).

By (2) and [1, 6 1 15 & 6. 3 5],

aB
JB+a+b+l
. 4)
1R+_R_
a

During the past few decades, many authors obtained various properties for K and K,, some of which
have been extended to the hypergeometric functions (cf. [3, 5-10, 12-15]). Among these results are the
followings:

a) In[6, Theorem 3. 2(3)7, it states that the function » 7> K(») +Alogr’ is increasing (decreasing)
on (0,1) if and only if A <C 1 (A = =&, respectively).

b) In [12, Theorem 2], it was proved that the functions r Hl,sin(r/K(r)) and r Hl?cos(r/K(r)) are both
r rt

strictly increasing on (0,1) with ranges (1,00) and (x/8,1), respectively.

Based on these known results above-mentioned, it is natural to ask whether [ 6, Theorem 3. 2(3) ] and
[12, Theorem 2] can be extended to the zero-balanced hypergeometric functions. For instance, for what
values of A € (—oco,00), the functionx = BxF(a.b3a+b;x) +2Alog(l—x) is monotone on (0,1) The
purpose of this paper is to give an affirmative answer to this question, by proving the following main
results.

Theorem 1 Fora,b € (0,00) withc= a +0, and for each numberA € (—oo,00), letf,(x) = BxF(a,b;
a+0b;x)+Alog(l—2x) and f,(x) = f,(x)/x. Then we have the following conclusions:

a) f1(0) =0,/ (1 )=Rifa=1, /1, )=coifd <1l,and f, (1 )=—c0ifd > 1.

b) If a << min{1,c/2}, then the function f, is increasing (decreasing) on (0,1) if and only if A < 1
(A =B, respectively). If 1 <A << B, then there exists a number», € (0,1) such that f, is increasing on (0,
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r1 ] and decreasing on [r,,1). Moreover, f,(— f,) is absolutely monotone on (0,1) if A << 1 (X = B,
respectively).

c) If ab = max{1,c/2}, then f, is increasing (decreasing) if and only if A <C B (A =1, respectively).
If B << <1, then there exists a number», € (0,1) such that f, is decreasing on (0,r, | and increasing on
[r;,1). Moreover, f,(— f,) is absolutely monotone on (0,1) if A <C B (A =1, respectively).

d) In the case when ab < min{3 —c¢,(c +1)/3},if A <min{ab.2aB} (A = 2aB ), then the function f,
is increasing (decreasing) from (0,1) onto (B —A,f,(17)) ( (f,(17),B — &), respectively).

e) In the case when ab = max{3 — ¢, (¢ +1)/3}, if A << 2¢B (A = max{ab,2e¢B} ), then f, is
increasing (decreasing) from (0,1) onto (B — 2, f,(17)) ( (f,(17),B —A), respectively).

Theorem 2 Letc =a + b fora.b € (0,00).

a) If ¢ <{1/4, then the function g, () = (1 — 2) "*sin(x (1 — 2)*F (x)/2) is strictly increasing from

[0,1) onto [1,90). In particular, for eacha € (0,1/2], the function g,(r) = l/sin(r/Ku (r)) is strictly
r

increasing from [0,1) onto [1,00).
b) For each B € (— ©0,00), the function g;(x) = (1 —a) Psin(x (1 —x)*F(x)/2) is increasing
(decreasing) from [0,1) onto[1,00) ( (0,1)) if and only if § = a (g << 0, respectively). If 0 << B << a

then there exists a number r; € (0,1) such that g is increasing on (0,7, | and decreasing on [r;,1).

1
o) Ifa << 1/3, then the function g, (x) = —cos(x (1 —x)*F(x)/2) is strictly increasing from (0,1) onto
x

(am/2,1). In particular, for eacha € (0,1/2], the function g5 (x) = r?cos(+'K, (r)) is strictly increasing from
(0,1) onto (ra (1 —a)/2,1). Moreover, fora,b € (0,00) with « < 1/3 and for allx € (0,1),

2arccosx 2arccos(anx/2)
n(l*a‘)2“<F(a’b’a+b’1)< )= &)
and fora € (0,1/2],r € [0,1), andp =a(l—a),
arccosr’ arccos(mor’/2)
——— < K, G 6
(1 —r2)% = ) = (1—r2)% 6

1 Preliminaries

In this section, we prove two lemmas needed in the proofs of our main results stated in Section 0.

First, let us recall the following concept: An infinitely-differentiable function f defined on an interval
I is said to be absolutely monotone on I if f and its derivatives of all orders are nonnegative at all points in
I. Such kind of functions were first investigated by S. N. Bernstein (see [16]).

Next, we recall the following well-known formulas [1]:

'(c)I'(c —a —b)
F<a7b;c;1)7F(('*(L>F(C*b)7a+b<c 7

dF (asbsc;x)  ab

—F(a+1.0+1;¢c+1;2) (8)

dx c
Fla,bsc;2) =0 —2) “"F(c—a,c—bsc;x) 9
BF(a.bsa +b;x) =R —log(l —2) +0((1—2x)log(l —x))(x — 1) (10)

We now prove two lemmas.
Lemmal Fora,b € (0,o0) withc =a + b, and forn € N,={m| m is a nonnegative integer}, set

i+ Dla,n)(b,n) db i+ Dm+2)a,n)(b.n)
N (cyndn e o= (con+Dn '

a) lfab <<min{l,c/2}) (ab>max{1,c/2} ), then the sequence {a, } is strictly decreasing (increasing,

n

respectively) inn € Ny, witha, =1 anda.. =lim,...a, =1/B. In other cases, namely, ¢/2 < ab <1 (or
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1 <<ab < c/2), there exists a positive integer n, =n, (a ,b) such that {a, } is increasing (decreasing) inn <C
n,» and decreasing (increasing, respectively) inn == n,.

b) Ifab <min{3—c,(c+1)/3} Cab=>=max{3—c,(c+1)/3} ), then the sequence {b, } is strictly decreasing
(increasing, respectively) inn € N,, withb, = 2/c andb.. = lim,...b, = 1/B. In other cases, thatis, (c+1)/3
<ab<3—c (or3—c < ab<(c+1)/3), there exists a positive integer n, = n, (a »b) such that {5, } is increasing
(decreasing) inn < n,, and decreasing (increasing, respectively) inn = n,.

¢) The function h, (x) = (tanx)/x is strictly increasing from (0,x/2) onto (1,00),

Proof. a) Clearly, a, =1. By the asymptotic formula of I'(x) [1, 6. 1. 46,

1 n+DITn+a)Tn+0) 1

li =— lim =—=.
S T B T T T DR o) B
It is easy to verify that
Ayt 71+ —1)n2+ Zab—c’
a, (n+D*(n+c)

by which one can easily obtain the assertions on the monotonicity properties of the sequence {a, }.
b) Similarly, we have the limiting values b, =2/c and b.. =1/B. It is easy to show that

{?ui:l_‘_(ab—Q—C*B)n—Q—Sa/J*C*l
b, n+D*n+c+D 7

from which part b) follows.

¢) It is well-known, and can been easily proved by applying the Monotone 1°Hépital” s Rule [ 3,
Theorem 1. 25]. []

Lemma2 Fora.b € (0,00),c=a+b,pu € (—oo,00) and forx € [0,1), leth,(z) =F(a,b;c+1;
x)/Fla,b;csx) and h;(x) =1 —2)*F(a,bi;c;x).

a) h, is strictly decreasing from (0,1) onto (0,1).

b) hs is strictly decreasing (increasing) from (0,1) onto (0,1) ( (1,00) ) if and only if 4 = a (p <0,
respectively).

Proof. a) The limiting values of h, are clear. By (1),

St
hz(x):Z”:" o, — Casn)(bsn) 7(a,n)(/),n)’

20, da
Since ¢,/d, =c/(n—+c) is strictly decreasing inn € N, the monotonicity property of h, follows from [ 15,
Lemma 2 1].
b) It follows from [8, Lemma 2. 15(1)] and its proof. []

(c+1l.mn " (con)n

2 Proofs of the Theorems

2. 1 Proof of Theorem 1
Leta, and b,be as in Lemma 1, and let H,(x) = B(l — 2)F(x) + aBaxG(x) — X. By differentiation,
(1)—(2) and (8), we obtain

, Ba, — 2
£ (x): - i <I>fffz<x>fx2 “H 2z (1)
, . aba . —
H, (1‘)=B[ZaG(1'>—P(1‘)+ —eF (1‘)}2526”17” (12)
C e
22 —2) f,(x)=H,(x) =xH,(x) — (1 —2)f,(x) (13)
1, , =\ abBb, — A
—H. (o) =Hy () = H/'(2) + fo(2) = Z] %r (14)

wheree, = (a,n)(b,n)[(ab— Dn+2ab—c]/[(csn+ Dn ].Itis clear that H,(0) = B—Aand H,(17) =
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1—2A.By (12), (4) and (10), we obtain
R . J—OO, if ab < 1
1
C log S ): 2—c. ilab=1 (15
—x 1—=x
1 oo, if ab > 1

H,’(0) =(2¢ — 1B.H, (1) :2+lim<ab110g

x—>1

1

a) Clearly, f,(0) =0. By (10),
R, ifx=1
o . ef 1 )
/A )=11m(xlog *Alog7>= o, if A <1
e l1—=x 1—=x
1__009 ifA :> 1
b) In the case when ab < min{1,c/2}, we see that ¢ < 1/2, andc =2 ifab =1. Hencee, =0, and it
follows from (12) that H,  is decreasing on (0,1) with H, (0) = (2¢ — 1)B <C 0, so that H, is decreasing
from (0,1) onto (1 —A,B —X). Therefore, by (11), the first two assertions in part b) follow.

Suppose that ab << min{1,c/2}. Then by Lemma 1(a) and (11), all the coefficients of the Maclaurin
series of f| are positive (negative) if A <C 1 (X = B, respectively). This yields the absolute monotonicity
properties of f.

¢) Observe that the condition ab == max{1,c/2} implies that e == 1/2, and ¢ <L 2 if ab = 1. Hence it follows
from (12) that H,  is strictly increasing on (0,1) with H,"(0) = (2¢ —1)B =0, so that H,is strictly increasing
from (0,1) onto (B —2A,1—2). This shows that £, is increasing (decreasing) on (0,1) if and only if A < B
(A =1, respectively), and if B <A <1, then there exists a number r, € (0,1) such that f, is decreasing
on (0,7, | and increasing on [r,,1).

Next, in this case, it follows from Lemma 1 that forn € N,,Ba, —A > 0if A << B, and Ba, —X <
0 if A = 1. This, together with (11), yields the absolute monotonicity properties of f, and — f.

d) The limiting values of f, follow from (11).

Suppose that ab < min{3—c,(c+1)/3}. From (10), (12) and (15), we obtain the limiting values H, (0) =
— 1) =0,H,(1")= H,(1")=1—A.

JabRJrZ—c, A= ab
H;(0) = 2aB—A,H;(1") = oo, if A <<ab (16)
1 — oo, if A >ab
It follows from Lemma 1(b), (14) and (16) that H is strictly increasing and convex (decreasing and concave) on
0, if A <Cab (X = 2aB, respectively), with H;(0) = 2¢B — A. Hence by (14), if A < min{ab,2aB} (A
= 2aB ), then H, is increasing (decreasing) from (0,1) onto (0,1 —2x) ( (1 —21,0), respectively). This,
together with (13), yield the monotonicity properties of f.
e) The proof of part e) is similar to that of part d). []
2.2 Proof of Theorem 2
a) Clearly, g,(0) =1, and if « << 1/4, then
- x . sin(x (1 —x2)*F(x)/2) F(x) T . F(x)
s =y I e o F/z A=t wr 2 g o =
Let i, be as in Lemma 1(¢), h, as in Lemma 2, and set u = x (1 —2)*F(x)/2. By differentiation,
2(1—x)%*

ucosu

g () =G, (x) = h,(u) + 2ah,(x) — 4a.

By Lemmas 1(c) and Lemma 2, we see that the function G, is strictly decreasing (0,1) onto (1 — 4qa,c0),
Hence the monotonicity property of g, follows. The second assertion in part a) is clear.
b) Clearly, g;(0) =1, and

(1) =™ i _FG@ sine A=) F)/2) (> f=a
* 2 (A=) n(1—2)F(x)/2 0. ifp=0
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Putt = n (1 —2)*F(x)/2. Then by differentiation,
A— 2 g (@) /sint =G, (2) = B —aG,(x),
where G;(x) =[h, ()| '« [1—h,(x)]. By Lemmas 1(¢) and Lemma 2, we see that G;(x) is a product of
two positive and strictly increasing functions on (0,1), with G;(0) =0 and G5 (1) =1. This shows that G,
is strictly decreasing from (0,1) onto (8 —a,f8),» and hence the conclusions in part b) follow.
c) Let G,(x) = cos(n (1 —x)*F(x)/2) and G;(x) = x. Then G,(0) = G;(0) = 0,g,(x) =
G,(x2)/G;(x), and by differentiation,

2 G, () sin(x (1 — 2)*F(x)/2)
LY _Gi(e)=F [2—n . = .
me GGy ) =Flo e 2ok (1— ) =

By part (b) and Lemma 2(a), if 1 —2a¢ > @, namely, « < 1/3, then G; is a product of three positive and

strictly increasing functions on (0,1), so that G4 is strictly increasing on (0,1). Hence the monotonicity
property of g, follows from [3, Theorem 1 25].

The remaining conclusions in part ¢) are clear. []
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