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A double inequality for the modulus
of the Grotzsch ring in R”
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Abstract: Let ¥ = +/1—+* and M, (r) be the (conformal) modulus of the Grotzsch Ring in the quasiconformal
theory in R", for n==3 and r€ (0,1). In this paper, a double inequality is obtained for the function H(r)=r"*M, ()
M, D" M, (7 OM, (r)" ', thus improving known bounds for H(r), and correcting an error in the proof of a
related inequality for H(r) which was given in a monograph by G. D. Anderson, M. K. Vamanamurthy and M.
Vuorinen.
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0 Notation and Main Results

For n==2, let R" denote the n-dimensional Euclidian spaces R"=R"U {e=},B" the unit ball in R", and
let e15 €s5...5 e, be the standard unit vectors in R". A domain DCR” is said to be a ring domain(or a ring
in brieD) if R"\ D consists of two components C, and C;, where C, is bounded. Such a ring is usually
denoted by R(C,,C,). For s>1, the so-called Grétzsch ring is defined by

R¢., (s) =R(B",[se,»>>]),s>1,
which means that the complementary components of the Grétzsch ring R, (s) with respect to R” are C, =
B"=B"UJB" and C,=[se; so>]. (See [1, p.1497.)

For E,FCGCR", we denote the family of curves joining E and F in G by A(E,F;G). If G=R" or R",

then we may omit G and simply denote A(E,F;G) by A(E,F). Let I be a family of curves in R*, R=RU

{co}, and for an arbitrary locally rectifiable curve y € T'y put 7(I') = {p|p:R"—>R is a nonnegative Borel-

measurable function such thatj pds=1} . The function p is said to be admissible if p€ F(T"). The modulus
Y

of I is then defined as

M(T) = inf J o"dm,
o€ ADJ R
where m is the n-dimensional Lebesgue measure. By [1, Theorem 8. 28, (8.31), (8.34) and (8. 35)], the
conformal capacity cap Rg.,(s) of the Grotzsch ring R, (s) can be expressed by

Y. (S)Ecap R(;.,, <\>EM(A<B” 7|:S(f] 900])) 9
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while the (conformal) modulus of R, (1/r) is defined by

1/(mn—1)

— § — Wy—1
M, (") =mod Rg,, (1/7) [7%1(1/”] 7E0,1),
where w, ; is the surface area of the unit sphere S* '=dJB". Clearly, u(r)=M, () is exactly the so-called

Grotzsch ring function, which has the following expression

71,71'(7”)
r =5y

Q)

where
“n/2
H(Cr) = J 7& :
o /1—r"sin?z

for r€ (0,1), are the complete elliptic integrals of the first kind (see [1] or [2]). Here and here-after, we

and A (D) =H(")

always let ¥’ = /1—+% for r€[0,1]. It is well known that the Grotzsch ring Rg., (1/r) and its modulus
M, () or its capacity 7,(1/7) play an extremely important role in the study of quasiconformal mappings in R".

The Grotzsch ring constant A, is defined by
log A, = lim [ M, (+) +log r ],

ot
which is indispensable in the study of M, () and 7,(s). It is well known that A, =4. Unfortunately, so far
we have only known some estimates for A, when n==3, among which is the following double inequality
270D QL2 1 2>3 (2)
(see [1, Theorem 12.21(1) ] and [3]).
Now we introduce the gamma and beta functions, and some constants depending only on n, which are
needed in the study of the properties of M, () and 7,(s). As usual, for complex numbers x and y with Re

x>0 and Re y>>0, the gamma and beta functions are defined by

o 1
t'e'dt and B(x,y) = J (1 =¥,

0

I'(r) — J

0

respectively. (Cf. [47] and [5].) It is well known that, for n==3, the volume Q, of B" and the (n—1)-

dimensional surface area w, ; of S" 'can be expressed by

2z . x/? o  oax?
&= e = p oy 2 e == ey
respectively. (Cf. [1, 2.23] and [6].) Let
J . sz( 1 f)<2 n)/(n ])dt — iB( 1 L) - :(2_] )]*n A — W, —1 V=D
) T 2Pa-Dn2 ) w2, '

In particular,
]zzn/z,]siﬁ,%(l/ﬁ):Z 62205+ ¢y =2/mycs =47 T(1/4) ' =0. 22847+, A, =="/4 and A;=],.
Some properties of Q,s @, 15 J,s ¢, and A, were given in [1, pp. 38-44&.1637] and in [6].

In the sequel, we let arth denote the inverse function of the hyperbolic tangent tanh, that is,

_ 1 I+x
arth x= Zlog 1= 1<<zx<l.

During the past decades, many properties have been obtained for p(r) (cf. [1]—[2] and [7]). The
known properties of M, (rr), however, are much less than those of (), because of lack of effective tools
for the study of M, () when n=3. For example, we have no explicit expression as or similar to (1) for
M, (r) when n=3. For the known properties of M, () and its related functions, the reader is referred to
[17, [3] and [7-13]. Some of these known results for M, () are related to the constants A, Qs @, 15 Jos

c, and A,. For example, the following inequalities hold

1 1 r 1/(1—n) 1 1_7‘ 1/(1—n)
Aafge(ipy)]=mo=a (o) )
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log ¥<M,,<r><1og “124 1)

1+ r
1—r

for r€ (0,1) and n=3 (see [1, Theorems 11.20(1), 11.21(2)&.(4), and 11.21(5) ]).
On the other hand, if we let h, () =+"*M, ()M, ()" ', then for all »€ (0,1),
hy (r) +h, D =p (D p(H=x"/4
by [1, (5.2)]. It is well known that for each n=2, all € (0,1) and for all K>0,
ok (N ok, P =19M, (M, (') = const,
where @k, () =M, "' (aM, (r)) and a=K"""" (cf. [1, 8.70]). Therefore, it is quite significant for us to

0<<M, (r" 'log <2A;! (5

study the properties of the function &,. in order to reveal the properties of M, () and ¢k, (). In [8,
Theorem 5. 1(3) ], it was proved that for each n=2 and all »€ (0,1),

A =Dl Gy, ()< R
2 C, 2 Cn

Later, [ 1, 11.36(2)] says that for ecach n==2 and all &€ (0,1),

log A, =4A! 'log A, (6)

Ant =%<h”(r>+h,,,<r’><2A;;*llog A, (7

However, the proof of the second inequality in (7) given in [ 1, p. 244 ] contains an error. This proof in
[1, p.244] is as follows: [ 1, Corollary 11.23(1) and (4) ] yield

log (A,/r)
log (1/r) "’

and the upper bound in (7) follows, since [1, Theorem 1. 25 ] implies that the function

,, log (A, /7)
log (1/7)

is increasing from (0,1) onto (1,2 logA,). It is easy to see that by this “proof ”, one can only obtain the

h, () <<A} 'r'"?

following inequality
h, (r)<<2A! 'loga,,
so that the upper bound for h,(r)+h, ('), which we can obtain by this method, is as follows
h, (r)+h, ' H)<<AA" 'log A, ,

consisting with that in (6). So far, the known best upper bound for A, (r)+h, (') is given by (6).

In addition to indicating the error in the proof of (7) given in [1, p. 244] as above-mentioned, the
main purpose of this paper is to improve the upper bound given in (6) by proving the following result.

Theorem 1 Let h, () =+">M, ()M, (')""'. Then for each n==2 and all r€ (0,1),

AP <h,(r) + h,('H)<<BA! 'log A, €))

where

S S log(lJr«/?)—logZ}l 93108+
4 1og<1+ﬁ>[+ 1.52+log 2 ’ )

1 Proof of Theorem 1

The proof of Theorem 1 stated in Section 0 requires the following lemma.
1.1 A Technical Lemma
Lemma 1 a) For r€(0,1), let g(r)=+*/arth r and f(r) =g (+)/r. Then f is strictly decreasing

from (0,1) onto (—o0,00),

1 1
b) The function F(r)=g(r) +g () is strictly increasing on (O ’ﬁ} , and decreasing on [ﬁvlj. In
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particular, for all r&€ (0,1),

1 |
Forr( L)
: J2 ) log (1442)

The first equality in (9) holds if and only if r=1/42.

Proof:a) Differentiation gives

/ _ r 7L
& (r)i(arth r)z(Zarthr r/zj’

so that

g 2 r
r  arthr (arthr)?

fr=
Clearly, f(0")=co and f(1~)=—co, By differentiation,

%(r/arth r)sf/(r)ZZ(lfar;h r)ir “arth 7

r

(9

(10)

an

which is negative for all € (0,1) since the function » —(arth )/ is strictly increasing from (0,1) onto

(1,22). This yields the result for f.
b) It is easy to verify that

%F’(m —h(H= () — FG.

By part (1), h is strictly decreasing from (0,1) onto (—©°,°°) and has a unique zero r,=1/4/2 on (0,1).

This yields the piecewise monotonicity of F.
Then the remaining conclusions are clear.
1.2 Proof of Theorem 1
The first inequality in (8) was proved in [8, Theorem 5. 1(3)].

Let HP)=h,(r)+h,('), and F be as in Lemma 1 b). By (5), we see that

M, ()" tarth r<<Al 1 n=2,0<r<1
On the other hand, the following inequality holds
M, (r)<<log (A,/2)+arth
for each n==2 and all 0<{r<1, since the function
r =M, (r)/[log (A,/2)+arth r"]

12

(13

is strictly decreasing from (0,1) onto (0,1) by [1, Theorem 11. 21(4)]. It follows from (12) and (13)

that
/2 2 /
H(r):M M, ) tarth o+ T MG
arth » arth r
n—1
<A: [ i "~ M, () .

/2

- 2 A
<A r An
A’ [a o (log 5 Farthr )*mh r(log 5 Harth r)]

A [1+(arth r+arth r jlog 2 ]
= A1 [1+F(Plog i |

This, together with Lemma 1 b), yields

* M, ()" arth r

n

1 A B
H()<A! [1+log2}:A" lbgh{lgoywﬁ) 10g2} a0

log (1++/2)
By (2), the following double inequality holds

log (1+4/2)
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1 1 1
<
fog A, ~0.76(n—1) Tlog2 ~1.52 +log 2

with equality if and only if n=3. Since log (14+/2)—log 2=0. 188226--->>0, it follows from (14) and (15)
that

(15

H)<BA; 'logA,,

where

1 log<1+ﬁ>10g2}1 23108
g 1og<1+ﬁ>[+ 152 log 2 . |

This yields the second inequality in (8) as desired.
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