[ 1 ] Markowitz H M. Portfolio selection [ J ] . The Journal of Finance, 1952, 7(1): 77 - 91. [ 2 ] Chopra V K, Ziemba W T. The effect of errors in means, variances, and covariances on optimal portfoliochoice [ J ] . The Journal of Portfolio Management, 1993, 19(2): 6 - 11. [ 3 ] Goldfarb D, Iyengar G. Robust portfolio selection problems [ J ] . Mathematics of Operations Research, 2003, 28(1): 1 - 38. [ 4 ] Scherer B. Can robust portfolio optimization help to build better portfolios [ J ] . Journal of Asset Management, 2007, 7(6): 374 - 387. [ 5 ] Cui X T, Zhu S S, Li D, et al. Mean - variance portfolio optimization with parameter sensitivity control [ J ] . Optimization Methods and Software, 2016, 31(4): 755 - 774. [ 6 ] Bai Y Q, Wei Y D, Li Q. An optimal trade - off model for portfolio selection with sensitivity of parameters [ J ] . Journal of Industrial & Management Optimization, 2017, 13(2): 947 - 965. [ 7 ] Peng J M, Zhu T, Luo H Z, et al. Semi - definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting [ J ] . Computational Optimization and Applications, 2015, 60(1): 171 - 198. [ 8 ] Parrilo P A. Semidefinite programming relaxations for semialgebraic problems [ J ] . Mathematical Programming, 2003, 96(2): 293 - 320. [ 9 ] Anstreicher K M. Semidefinite programming versus the reformulation - linearization technique for nonconvex quadratically constrained quadratic programming [ J ] . Journal of Global Optimization, 2009, 43(2): 471 - 484. [ 10 ] Zheng X J, Sun X L, Li D. Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations [ J ] . Journal of Global Optimization, 2011, 50(4): 695 - 712.
[1]王琳,洪陈春,罗和治.带参数敏感度的最优权衡投资组合问题的半定规划松弛[J].浙江理工大学学报,2024,51-52(自科六):861.
WANG Lin,HONG Chenchun,LUO Hezhi.Semi definite programming relaxation for optimal trade off portfolio selection with sensitivity of parameters[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):861.