|本期目录/Table of Contents|

[1]余浩,程瑟翰,隆湘,等.引入静电相互作用的SiO 2纳米复合水凝胶制备及其性能研究[J].浙江理工大学学报,2024,51-52(自科六):764-776.
 YU Hao,CHENG Sehan,LONG Xiang,et al.A study on the preparation and performance of SiO 2 nanocomposite hydrogels with electrostatic interactions[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):764-776.
点击复制

引入静电相互作用的SiO 2纳米复合水凝胶制备及其性能研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第51-52卷
期数:
2024年自科第六期
页码:
764-776
栏目:
出版日期:
2024-11-10

文章信息/Info

Title:
A study on the preparation and performance of SiO 2 nanocomposite hydrogels with electrostatic interactions
作者:
余浩程瑟翰隆湘傅雅琴钱晨
1.浙江理工大学材料科学与工程学院,杭州 310018;2.浙江省现代纺织技术创新中心(鉴湖实验室),浙江绍兴 312000
Author(s):
YU Hao CHENG Sehan LONG Xiang FU Yaqin QIAN Chen
1.School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou  310018, China; 2.Zhejiang Provincial Innovation Center of Advanced Textile  Technology (Jianhu Laboratory), Shaoxing 312000, China
关键词:
纳米复合水凝胶纳米二氧化硅表面改性静电相互作用力学性能
分类号:
O648-17
文献标志码:
A
摘要:
提升纳米粒子与凝胶高分子网络的结合程度以改善两者之间的异质性,对于提升纳米复合水凝胶的力学性能极为关键。为此,在纳米复合水凝胶中引入静电相互作用,进一步提升复合凝胶的力学性能。首先,对纳米二氧化硅(SiO 2)进行表面改性,制备聚对苯乙烯磺酸钠(PSS)接枝的PSS SiO 2纳米粒子;再将其与聚N, N, N 三甲基 3 (2 甲基烯丙酰氨基) 1 氯化丙铵(PMPTC)共聚改性的聚丙烯酰胺(PAM)水凝胶复合,制备得到PSS SiO 2/P(AM co MPTC)纳米复合水凝胶;研究PSS SiO 2/P(AM co MPTC)复合水凝胶中PSS SiO 2纳米粒子的—SO - 3与PMPTC的—N +(CH 3) 3间的静电相互作用对其微观形貌、溶胀性能、流变性能和力学性能的影响。结果表明:通过PSS SiO 2纳米粒子表面聚阴离子与水凝胶网络聚阳离子间形成的静电相互作用,SiO 2纳米粒子与水凝胶基体间的结合程度显著增强。与添加纯SiO 2纳米粒子的SiO 2/P(AM co MPTC)纳米复合水凝胶相比,添加PSS SiO 2纳米粒子的PSS SiO 2/P(AM co MPTC)纳米复合水凝胶力学性能提升明显,最优组分的拉伸模量可达160 9 kPa、强度为95 7 kPa、韧性为31 1 kJ/m 3,分别提高了176%、297%和556%,并表现出反聚电解质效应的盐响应行为。该研究表明,纳米粒子与复合凝胶基体之间静电相互作用的引入,有助于进一步提升复合水凝胶的力学性能,同时赋予其类似反聚电解质效应的盐响应行为。该设计策略对开发高性能纳米复合水凝胶具有一定的参考价值。

参考文献/References:

[1]Barhoum A, Sadak O, Acosta Ramirez I, et al. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges[J]. Advances in Colloid and Interface Science, 2023, 317: 102920.
[2]Owh C, Ho D, Loh X J, et al. Towards machine learning for hydrogel drug delivery systems[J]. Trends in Biotechnology, 2023, 41(4): 476-479.
[3]Ma C M, Gao X R, Yang Y, et al. The three-dimensional culture of L929 and C2C12 cells based on SPI-SA interpenetrating network hydrogel scaffold with excellent mechanical properties[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1329183.
[4]Koshut W J, Kwon N, Zhao J, et al. Flaw sensitivity and tensile fatigue of a high-strength hydrogel[J]. International Journal of Fatigue, 2022, 163: 107071.
[5]Su Z K, Xue B B, Xu C, et al. Mussel-inspired calcium alginate/polyacrylamide dual network hydrogel: A physical barrier to prevent postoperative re-adhesion[J]. Polymers, 2023, 15(23): 4498.
[6]李冰, 徐艺洲, 魏巍, 等. 海藻酸钙/聚(N-异丙基丙烯酰胺)互穿网络水凝胶的药物释放及抗菌性能[J]. 浙江理工大学学报(自然科学版), 2018, 39(6): 715-722.
[7]Li K, Zhu Y T, Zhang Q, et al. Interstitial injection of hydrogels with high-mechanical conductivity relieves muscle atrophy induced by nerve injury[J]. Advanced Healthcare Materials, 2023, 12(24): e2202707.
[8]Chen Z H, Fan S T, Qiu Z J, et al. Tough double-network elastomers with slip-rings[J]. Polymer Chemistry, 2021, 12(21): 3142-3152.
[9]Tang Q, Zhao D L, Zhou Q, et al. Polyhistidine-based metal coordination hydrogels with physiologically relevant pH responsiveness and enhanced stability through a novel synthesis[J]. Macromolecular Rapid Communications, 2018, 39(11): e1800109.
[10]Li J Y, Zhao Z L, Kim E, et al. Network-based redox communication between abiotic interactive materials[J]. iScience, 2022, 25(7): 104548.

备注/Memo

备注/Memo:
收稿日期: 2024-03-05
网络出版日期:2024-06-12
基金项目: 国家自然科学基金项目(52103150);浙江省自然科学基金项目(LQ22E030012)
作者简介: 余浩(1998—),男,安徽六安人,硕士研究生,主要从事材料物理与化学等方面的研究
通信作者: 钱晨,E-mail:qian@zstu.edu.cn
更新日期/Last Update: 2024-11-14