[1] Wu Z J, Xiao Y Q. On the Gromov-Hausdorff limit of metric spaces[J]. Mathematica Slovaca, 2019, 69(4): 931-938.
[2] Guido D, Marotta N, Morsella G, et al. A Gromov-Hausdorff distance between von Neumann algebras and an application to free quantum fields[J]. Journal of Functional Analysis, 2017, 272(8): 3238-3258.
[3] Ziemer W P. Weakly differentiable functions: Sobolev spaces and functions of bounded variation[M]. New York: Springer-Verlag, 1989.
[4] Shanmugalingam N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces[J]. Revista Matemática Iberoamericana, 2000, 16(2): 243-279.
[5] Heinonen J, Koskela P, Shanmugalingam N, et al. Sobolev Spaces on Metric Measure Spaces[M]. Cambridge: Cambridge University Press, 2015.
[6] Heinonen J, Koskela P, Shanmugalingam N, et al. Sobolev classes of Banach space-valued functions and quasiconformal mappings[J]. Journal D’Analyse Mathématique, 2001, 85(1): 87-139.
[7] Keith S. Modulus and the Poincaré inequality on metric measure spaces[J]. Mathematische Zeitschrift, 2003, 245: 255-292.
[8] Keith S. Measurable differentiable structures and the Poincaré inequality[J]. Indiana University Mathematics Journal, 2004, 53(4): 1127-1150.
[9] Cheeger J. Differentiability of Lipschitz functions on metric measure spaces[J]. Geometric & Functional Analysis GAFA, 1999, 9: 428-517.
[10] Keith S. A differentiable structure for metric measure spaces[J]. Advances in Mathematics, 2004, 183(2): 271-315.
[11] Heinonen J, Koskela P. Quasiconformal maps in metric spaces with controlled geometry[J]. Acta Mathematica, 1998, 181(1): 1-61.
[12] 钟根红, 韦露淑, 贺建辉, 等. 双参数广义三角函数与双曲函数的几个均值不等式[J]. 浙江理工大学学报(自然科学版), 2021, 45(2): 242-248.
[13] 钟根红, 李林钟, 马晓艳. 广义三角函数与双曲函数的 Wilker-Huygens 型不等式[J]. 浙江理工大学学报(自然科学版), 2019, 41(1): 118-121.
[14] 张秋莹, 黄体仁. 度量空间中拟双曲映射的局部性质[J]. 浙江理工大学学报(自然科学版), 2021, 45(6): 835-845.