|本期目录/Table of Contents|

[1]孟小力,刘立丽,王磊.VEGF-B线性模拟肽的设计、合成和抗血管新生活性研究[J].浙江理工大学学报,2025,53-54(自科六):864-871.
 MENG Xiaoli,LIU Lili,WANG Lei.Design, synthesis, and anti-angiogenic activity evaluation of a linear peptide mimicking VEGF-BMENG Xiaoli, LIU Lili, WANG Lei[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):864-871.
点击复制

VEGF-B线性模拟肽的设计、合成和抗血管新生活性研究
()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
864-871
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
Design, synthesis, and anti-angiogenic activity evaluation of a linear peptide mimicking VEGF-B
MENG Xiaoli, LIU Lili, WANG Lei
文章编号:
1673-3851(2025)11-0864-08
作者:
孟小力刘立丽王磊
浙江理工大学生命科学与医药学院,杭州310018
Author(s):
MENG Xiaoli LIU Lili WANG Lei
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
抗血管新生血管内皮生长因子受体多肽抑制剂计算机辅助药物设计人脐静脉内皮细胞
分类号:
TQ464.7;R914
文献标志码:
A
摘要:
靶向抗血管内皮生长因子(Vascularendothelialgrowthfactor,VEGF)与血管内皮生长因子受体
(Vascularendothelialgrowthfactorreceptors,VEGFRs)结合的抗血管新生抑制剂,在治疗肿瘤和视网膜黄斑病变上
有重要的临床价值。为进一步探索更多新型高效的靶向VEGFR抑制剂,采用计算机辅助药物设计(Computer-aided
drugdesign,CADD)方法分析VEGF-B与VEGFR1的相互作用,通过模拟VEGF-B关键位点设计多肽抑制剂,合成
得到 VEGF-B线性模拟肽Peptide1,并通过细胞实验评估线性模拟肽Peptide1的靶向性和抗血管新生活性。结果
表明:Peptide1的氨基酸序列为Leu-Thr-Val-Glu-Leu-Met-Gly-Thr-Val-Ala-Lys-Gln-Leu-Val-Pro-Ser-NH2,纯度为
97.3%,合成收率为10.3%;Peptide1能特异性抑制 VEGF与 VEGFR1的结合,半数抑制浓度(Halfmaximal
inhibitoryconcentration,IC50)为 21.9μmol;Peptide1 显 著 抑 制 了 人 脐 静 脉 内 皮 细 胞 (Humanumbilicalvein
endothelialcells,HUVECs)的增殖、迁移及微管形成。该文探索了基于 VEGF-B结构设计 VEGFR多肽抑制剂的可
行性与潜在应用价值,为开发新型靶向抗血管新生多肽抑制剂提供了科学依据。

参考文献/References:

[1] Liu Z L, Chen H H, Zheng L L, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer[J]. Signal Transduction and Targeted Therapy, 2023, 8: 198.
[2] Mabeta P, Steenkamp V. The VEGF/VEGFR axis revisited: Implications for cancer therapy[J]. International Journal of Molecular Sciences, 2022, 23(24): 15585.
[3] 蓝雪灵, 黄燕妮, 朱敏敏, 等. 抗VEGF及其受体分子靶向药物治疗肝癌机制的研究进展[J]. 中国临床药理学与治疗学, 2024, 29(6): 707-714.
[4] 鄢闻嘉, 罗德伦, 冯加劲, 等. 眼底抗血管内皮生长因子药物应用与创新[J]. 中华眼底病杂志, 2023, 39(8): 701-707.
[5] Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2025 update[J]. Pharmacological Research, 2025, 216: 107723.
[6] Thakur A, Rana M, Mishra A, et al. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions[J]. European Journal of Medicinal Chemistry, 2024, 272: 116472.
[7] Wang L, Liu W Q, Broussy S, et al. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis[J]. Frontiers in Pharmacology, 2023, 14: 1307860.
[8] Goldman A, Bomze D, Dankner R, et al. Cardiovascular toxicities of antiangiogenic tyrosine kinase inhibitors: A retrospective, pharmacovigilance study[J]. Targeted Oncology, 2021, 16(4): 471-483.
[9] Zhang Z, Wu Y, Lyu Y L, et al. Efficacy and safety of intravitreal HLX04-O, an anti-VEGF monoclonal antibody, for the treatment of wet age-related macular degeneration[J]. International Journal of Ophthalmology, 2022, 15(9): 1549-1553.
[10] Qi S, Deng S, Lian Z, et al. Novel drugs with high efficacy against tumor angiogenesis[J]. International Journal of Molecular Sciences, 2022, 23(13): 6934.
[11] Wang L, Wang N, Zhang W, et al. Therapeutic peptides: Current applications and future directions[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 48.
[12] Lau J L, Dunn M K. Therapeutic peptides: Historical perspectives, current development trends, and future directions[J]. Bioorganic & Medicinal Chemistry, 2018, 26(10): 2700-2707.
[13] Di Stasi R, De Rosa L, D’Andrea L D. Structure-based design of peptides targeting VEGF/VEGFRs[J]. Pharmaceuticals, 2023, 16(6): 851.
[14] Ye X, Gaucher J F, Vidal M, et al. A structural overview of vascular endothelial growth factors pharmacological ligands: From macromolecules to designed peptidomimetics[J]. Molecules, 2021, 26(22): 6759.
[15] Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease: Beyond discovery and development[J]. Cell, 2019, 176(6): 1248-1264.
[16] Iyer S, Darley P I, Acharya K R. Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity[J]. Journal of Biological Chemistry, 2010, 285(31): 23779-23789.
[17] Markovic-Mueller S, Stuttfeld E, Asthana M, et al. Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A[J]. Structure, 2017, 25(2): 341-352.
[18] Goncalves V, Gautier B, Garbay C, et al. Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands[J]. Analytical Biochemistry, 2007, 366(1): 108-110.
[19] Cho K, Choi E S, Kim J H, et al. Numerical learning of deep features from drug-exposed cell images to calculate IC50 without staining[J]. Scientific Reports, 2022, 12(1): 6610.
[20] Wang L, Xu M, Hu H, et al. A cyclic peptide epitope of an under-explored VEGF-B loop 1 demonstrated in vivo anti-angiogenic and anti-tumor activities[J]. Frontiers in Pharmacology, 2021, 12: 734544.
[21] Hasan M R, Alsaiari A A, Fakhurji B Z, et al. Application of mathematical modeling and computational tools in the modern drug design and development process[J]. Molecules, 2022, 27(13): 4169.
[22] Wang L, Zhou L, Reille-Seroussi M, et al. Identification of peptidic antagonists of vascular endothelial growth factor receptor 1 by scanning the binding epitopes of its ligands[J]. Journal of Medicinal Chemistry, 2017, 60(15): 6598-6606.
[23] Lacson E Jr, Wang W, Hakim R M, et al. Associates of mortality and hospitalization in hemodialysis: Potentially actionable laboratory variables and vascular access[J]. American Journal of Kidney Diseases, 2009, 53(1): 79-90.
[24] Murthy V L, Naya M, Taqueti V R, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes[J]. Circulation, 2014, 129(24): 2518-2527.
[25] Xiao W, Jiang W, Chen Z, et al. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines[J]. Signal Transduction and Targeted Therapy, 2025, 10: 74.
[26] Al Musaimi O, Lombardi L, Williams D R, et al. Strategies for improving peptide stability and delivery[J]. Pharmaceuticals, 2022, 15(10): 1283.

备注/Memo

备注/Memo:
收稿日期:2025-04-22 网络出版日期:2025-09-17
基金项目:浙江理工大学青年创新专项项目(24202106-Y)
作者简介:孟小力(1994— ),男,湖北公安人,硕士研究生,主要从事抗肿瘤药物方面的研究。
通信作者:王 磊,E-mail:wanglei@zstu.edu.cn
更新日期/Last Update: 2025-11-25