|本期目录/Table of Contents|

[1]肖楚琼,郭玉琴,金伟波,等.VEGFR2 基因靶向RNA纳米颗粒抑制剂的研究[J].浙江理工大学学报,2025,53-54(自科六):827-835.
 XIAO Chuqiong,GUO Yuqin,JIN Weibo,et al.An investigation into VEGFR2-targeted RNA-based nanoparticle inhibitors[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):827-835.
点击复制

VEGFR2 基因靶向RNA纳米颗粒抑制剂的研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
827-835
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
An investigation into VEGFR2-targeted RNA-based nanoparticle inhibitors
文章编号:
1673-3851(2025)11-0827-09
作者:
肖楚琼郭玉琴金伟波吕正兵
浙江理工大学,a.生命科学与医药学院;b.图书馆,杭州310018
Author(s):
XIAO Chuqiong GUO Yuqin JIN Weibo LÜ Zhengbing
a. College of Life Sciences and Medicine; b. Library, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
血管内皮生长因子受体2RNA干扰血管生成纳米颗粒肿瘤抑制剂
分类号:
Q781
文献标志码:
A
摘要:
为开发靶向血管内皮生长因子-血管内皮生长因子受体2(VEGF-VEGFR2)通路的肿瘤抑制剂药物,通
过生物信息学筛选多条高效的小干扰RNA(siRNA),构建一种针对VEGFR2基因的可自组装形成环状结构的KDVEGFR2-RNA 纳米颗粒;通过大肠埃希菌表达系统进行大量制备,对其结构进行表征,并评估其体内外抗血管生成
活性。结果表明:KD-VEGFR2-RNA 纳米颗粒的粒径为100~200nm,结构稳定;在质量浓度为25.0ng/μL时该
纳米颗粒对 HUVEC细胞具有良好安全性,能明显抑制细胞迁移和成管能力,抑制率分别为57.57%和64.77%;纳
米颗粒可降低VEGFR2 mRNA水平和蛋白表达量,并具有体内抗血管生成的活性。该研究制备的KD-VEGFR2-
RNA 纳米颗粒可通过协同抑制 VEGFR2通路发挥抗血管生成作用,为肿瘤靶向治疗提供了一种新策略。

参考文献/References:

[1] Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling[J]. Nature Reviews Molecular Cell Biology, 2016, 17(10): 611-625.
[2] 杨阳, 王万祥. 血管内皮生长因子及其受体靶向治疗在胆道恶性肿瘤中的研究进展[J]. 中国普通外科杂志, 2024, 33(2): 265-272.
[3] Peach C J, Mignone V W, Arruda M A, et al. Molecular pharmacology of VEGF-A isoforms: Binding and signalling at VEGFR2[J]. International Journal of Molecular Sciences, 2018, 19(4): 1264.
[4] Sitohy B, Nagy J A, Dvorak H F. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target[J]. Cancer Research, 2012, 72(8): 1909-1914.
[5] Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A[J]. Nature Reviews Molecular Cell Biology, 2023, 24(11): 816-834.
[6] Cho R, Sakurai Y, Jones H S, et al. Silencing of VEGFR2 by RGD-modified lipid nanoparticles enhanced the efficacy of anti-PD-1 antibody by accelerating vascular normalization and infiltration of T cells in tumors[J]. Cancers, 2020, 12(12): 3630.
[7] Wang D Y, Liu J C, Li T Q, et al. A VEGFR targeting peptide-drug conjugate (PDC) suppresses tumor angiogenesis in a TACE model for hepatocellular carcinoma therapy[J]. Cell Death Discovery, 2022, 8(1): 411.
[8] Li H S, Huang H Y, Zhang T, et al. Apatinib: A novel antiangiogenic drug in monotherapy or combination immunotherapy for digestive system malignancies[J]. Frontiers in Immunology, 2022, 13: 937307.
[9] Xie C F, Zhou X, Liang C H, et al. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer[J]. Journal of Experimental & Clinical Cancer Research, 2021, 40(1): 266.
[10] Thakur A, Rana M, Mishra A, et al. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions[J]. European Journal of Medicinal Chemistry, 2024, 272: 116472.
[11] Marques C S, Brandão P, Burke A J. Targeting vascular endothelial growth factor receptor 2 (VEGFR-2): Latest insights on synthetic strategies[J]. Molecules, 2024, 29(22): 5341.
[12] Li W H, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer[J]. Autophagy, 2024, 20(1): 114-130.
[13] Tong L N, Liu D Q, Cao Z Y, et al. Research status and prospect of non-viral vectors based on siRNA: A review[J]. International Journal of Molecular Sciences, 2023, 24(4): 3375.
[14] Ali Zaidi S S, Fatima F, Ali Zaidi S A, et al. Engineering siRNA therapeutics: Challenges and strategies[J]. Journal of Nanobiotechnology, 2023, 21(1): 381.
[15] 李沁芸, 邹和琴, 杨亦彬. 糖尿病大鼠皮下基质胶血管生成模型的构建[J]. 医学研究生学报, 2016, 29(9): 913-917.
[16] Guan R B, Chu D D, Han X Y, et al. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 753790.
[17] Tuijtel M W, Mulder A A, Posthuma C C, et al. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision[J]. Scientific Reports, 2017, 7(1): 10442.
[18] Grabow W W, Zakrevsky P, Afonin K A, et al. Self-assembling RNA nanorings based on RNA I/II inverse kissing complexes[J]. Nano Letters, 2011, 11(2): 878-887.
[19] Severcan I, Geary C, Verzemnieks E, et al. Square-shaped RNA particles from different RNA folds[J]. Nano Letters, 2009, 9(3): 1270-1277.
[20] Kim T K, Eberwine J H. Mammalian cell transfection: The present and the future[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8): 3173-3178.
[21] Lorenc P, Sikorska A, Molenda S, et al. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway[J]. Biomedicine & Pharmacotherapy, 2024, 180: 117585.
[22] Elayat G, Selim A. Angiogenesis in breast cancer: Insights and innovations[J]. Clinical and Experimental Medicine, 2024, 24(1): 178.
[23] Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease: Beyond discovery and development[J]. Cell, 2019, 176(6): 1248-1264.
[24] Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay[J]. Reproductive Toxicology, 2017, 70: 97-101.
[25] 罗雪兰, 滕红丽, 覃裕旺, 等. 高尿酸对血管内皮细胞eNOS基因表达的调节作用及其对血管新生的影响[J]. 中国老年学杂志, 2020, 40(7): 1498-1502.

备注/Memo

备注/Memo:
收稿日期:2025-03-14 网络出版日期:2025-06-30
作者简介:肖楚琼(2000— ),女,浙江嘉兴人,硕士研究生,主要从事RNAi方面的研究。
通信作者:吕正兵,E-mail:zhengbingl@zstu.edu.cn
更新日期/Last Update: 2025-11-25