|本期目录/Table of Contents|

[1]王柯洁,何先撑,翁珊珊,等.基于单张合体着装图像的男性人体三围尺寸测量方法[J].浙江理工大学学报,2025,53-54(自科六):816-826.
 WANG Kejie,HE Xiancheng,WENG Shanshan,et al.Measurement of male human body circumference dimensions based on a single fitted dress image[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):816-826.
点击复制

基于单张合体着装图像的男性人体三围尺寸测量方法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
816-826
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
Measurement of male human body circumference dimensions based on a single fitted dress image
文章编号:
1673-3851(2025)11-0816-11
作者:
王柯洁何先撑翁珊珊侯钰 102 102); background-color: rgb(255 255 255); font-family: Arial Verdana sans-serif; font-size: 12pt;">杨阳刘正
1.浙江理工大学,a.服装学院;b.丝绸文化传承与产品设计数字化技术文旅部重点实验室;c.国际时装技术学院,
杭州310018;2.浙江三彩服饰有限公司,杭州321105;3.雅戈尔服装制造有限公司,宁波315153
Author(s):
WANG Kejie HE Xiancheng WENG Shanshan HOU Jue YANG Yang LIU Zheng
1a. School of Fashion Design & Engineering; 1b. Key Laboratory of Silk Culture Inheritance and Products Design Digital Technology, Ministry of Culture and Tourism; 1c. International Institute of Fashion Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. COLOUR Fashion Co., Ltd., Hangzhou 321105, China; 3. Youngor Garment Manufacturing Co., Ltd., Ningbo 315153, China
关键词:
人体测量深度学习着装图像单视角重建三围尺寸
分类号:
TS941.17
文献标志码:
A
摘要:
针对现有非接触式人体测量需净体或着紧身衣而导致用户体验感差的问题,提出了一种基于单张合体
着装图像的非接触式人体三围尺寸测量方法。通过融合卷积神经网络(Convolutionalneuralnetworks,CNN)与特
征金字塔网络(Featurepyramidnetworks,FPN)提取多尺度人体特征,结合 OpenPose算法获取人体关键点与姿态
信息,并采用蒙皮多人线性模型(Skinnedmulti-personlinear,SMPL)参数化模型完成三维重建,同时引入辅助预测
任务模块以增强图像编码器对人体形态的推理能力;根据特征点提取结果,定义截面平面并进行相交检测,采用深
度优先搜索算法(Depthfirstsearch,DFS)及欧氏距离计算胸围、腰围与臀围周长,结合身高参数完成尺寸归一化处
理;根据测量结果误差和身体质量指数(BMI)的相关性设置误差补偿,对初始测量结果进行修正,以提高单张着装图
像的人体测量精度,并通过与手工测得的净体尺寸对比,验证所提方法的准确性。结果表明:在着常规合体服装下,
采用该方法测得的胸围、腰围和臀围的绝对误差范围分别控制在0.12~1.51、0.03~1.53和0.07~0.89cm,相对
误差均低于2%。该方法在无需脱除服装的前提下实现了对人体三围的精准测量,具备较强的实际可行性与应用推
广价值,可为服装定制提供一种高效、低干扰的尺寸测量解决方案。

参考文献/References:

[1] 王悦, 任军, 马飞, 等. 基于服装个性化智能定制的三维人体测量系统物-像结构算法的研究[J]. 计算机科学, 2024, 51(S1): 1122-1126.
[2] 刘国联, 季开宸, 金蓉, 等. 青年男体非接触式测量系统围度拟合的完善[J]. 丝绸, 2014, 51(10): 20-25.
[3] Uhm T, Park H, Park J I. Fully vision-based automatic human body measurement system for apparel application[J]. Measurement, 2015, 61: 169-179.
[4] 马燕, 殷志昂, 黄慧, 等. 结合卷积神经网络与曲线拟合的人体尺寸测量[J]. 中国图象图形学报, 2022, 27(10): 3068-3081.
[5] 林瑞冰, 罗芊芊, 葛苏敏, 等. 复杂背景图像中人体轮廓的自动提取[J]. 北京服装学院学报(自然科学版), 2024, 44(2): 104-110.
[6] 卢志洁, 侯珏, 杨阳, 等. 基于多视角图像三维重建与点云配准的着装间隙量表征[J]. 浙江理工大学学报(自然科学), 2024, 51(2): 202-209.
[7] Allen B, Curless B, Popović Z. The space of human body shapes: Reconstruction and parameterization from range scans[J]. ACM Transactions on Graphics, 2003, 22(3): 587-594.
[8] Loper M, Mahmood N, Romero J, et al. SMPL: A skinned multi-person linear model[J]. ACM Transactions on Graphics, 2023, 34(6): 851-866.
[9] Li J F, Xu C, Chen Z C, et al. HybrIK: A hybrid analytical-neural inverse kinematics solution for 3D human pose and shape estimation[C]// Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3382-3392.
[10] Choutas V, Müller L, Huang C P, et al. Accurate 3D body shape regression using metric and semantic attributes[C]// Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 2708-2718.
[11] Afifi M, Derpanis K G, Ommer B, et al. Learning multi-scale photo exposure correction[C]// Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9153-9163.
[12] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[13] 金可艺, 陈惠妹, 曹斯茹. 基于改进FPN的小目标检测算法[J]. 中国新技术新产品, 2024, (21): 45-48.
[14] Cao Z, Hidalgo G, Simon T, et al. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[15] Güler R A, Neverova N, Kokkinos I. DensePose: Dense human pose estimation in the wild[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 7297-7306.
[16] Zhang H W, Cao J, Lu G, et al. Learning 3D human shape and pose from dense body parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2610-2627.
[17] Heymsfield S B, Wang Z, Baumgartner R N, et al. Human body composition: Advances in models and methods[J]. Annual Review of Nutrition, 1997, 17: 527-558.
[18] Gallagher D, Heymsfield S B, Heo M, et al. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index[J]. The American Journal of Clinical Nutrition, 2000, 72(3): 694-701.

相似文献/References:

[1]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on  attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):208.
[2]包晓安,徐海,张娜,等.基于深度学习的语音识别模型及其在智能家居中的应用[J].浙江理工大学学报,2019,41-42(自科二):217.
 BAO Xiaoan,XU Hai,ZHANG Na,et al.Speech recognition model based on deep learning and its application in smart home[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):217.
[3]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):208.
[4]陈巧红,董雯,孙麒,等.基于混合神经网络的单文档自动文摘模型[J].浙江理工大学学报,2019,41-42(自科四):489.
 CHEN Qiaohong,DONG Wen,SUN Qi,et al.Single document automatic summarization model based on hybrid neural network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):489.
[5]包晓安,高春波,张娜,等.基于生成对抗网络的图像超分辨率方法[J].浙江理工大学学报,2019,41-42(自科四):499.
 BAO Xiaoan,GAO Chunbo,ZHANG Na,et al.Image superresolution method based ongenerative adversarial network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):499.
[6]陈巧红,陈翊,孙麒,等.服装图像分类技术综述[J].浙江理工大学学报,2019,41-42(自科五):631.
 CHEN Qiaohong,CHEN Yi,SUN Qi,et al.Overview of clothing image classification technology[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):631.
[7]包晓安,涂小妹,徐璐,等.基于扩展卷积神经网络与度量学习的指静脉识别[J].浙江理工大学学报,2020,43-44(自科二):232.
 BAO Xiaoan,TU Xiaomei,XU Lu,et al.Finger vein recognition based on extended convolutional neural networks and metric learning[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科六):232.
[8]潘海鹏,郝慧,苏雯.基于注意力机制与多尺度特征融合的人脸表情识别[J].浙江理工大学学报,2022,47-48(自科三):382.
 PAN Haipeng,HAO Hui,SU Wen.Facial expression recognition based on attention mechanism and multiscale feature fusion[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科六):382.
[9]郭波,吕文涛,余序宜,等.基于改进YOLOv5模型的织物疵点检测算法[J].浙江理工大学学报,2022,47-48(自科五):755.
 GUO Bo,LV Wentao,YU Xuyi,et al.Fabric defect detection algorithm based on improved YOLOv5 Model[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科六):755.
[10]廖龙杰,吕文涛,叶冬,等.基于深度学习的小目标检测算法研究进展[J].浙江理工大学学报,2023,49-50(自科三):331.
 LIAO Longjie,L Wentao,YE Dong,et al.Research progress of small target detection based on deep learning[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科六):331.

备注/Memo

备注/Memo:
收稿日期:2025-03-11 网络出版日期:2025-06-26
基金项目:嘉兴市重点研究计划项目(2024BZ20013);浙江省文化和旅游科技创新示范项目(20230013)
作者简介:王柯洁(2000— ),女,河南洛阳人,硕士研究生,主要从事服装数字化方面的研究。
通信作者:刘 正,E-mail:Koala@zstu.edu.cn
更新日期/Last Update: 2025-11-25