|本期目录/Table of Contents|

[1]童敏飞,田芳硕,李梦成,等.PAA/LAGP共混改性PVDF-HFP基固态电解质的制备及其在固态电池中的性能[J].浙江理工大学学报,2025,53-54(自科六):766-773.
 TONG Minfei,TIAN Fangshuo,LI Mengcheng,et al.Preparation of PAA/LAGP blended modified PVDF-HFP-based solid electrolyte and its performance in solid-state batteries[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):766-773.
点击复制

PAA/LAGP共混改性PVDF-HFP基固态电解质的制备及其在固态电池中的性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
766-773
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
Preparation of PAA/LAGP blended modified PVDF-HFP-based solid electrolyte and its performance in solid-state batteries
文章编号:
1673-3851(2025)11-0766-08
作者:
童敏飞田芳硕李梦成叶方敏
浙江理工大学理学院,杭州310018
Author(s):
TONG Minfei TIAN Fangshuo LI Mengcheng YE Fangmin
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
锂离子电池固态电解质固态电池聚偏二氟乙烯-六氟丙烯聚丙烯酸LAGP
分类号:
TM912
文献标志码:
A
摘要:
为了提高聚合物固态电解质在室温下极低的锂离子电导率,解决其与锂金属负极不良副反应问题,并改善电极接触的界面相容性,以聚乙烯亚胺(PEI)为交联剂,将含丰富羧基的聚丙烯酸(PAA)引入聚偏二氟乙烯-六氟丙烯(PVDF-HFP)中,并添加Li1.5Al0.5Ge1.5(PO4)3(LAGP)作为无机填料,采用溶液浇铸法制备PVDF-HFP基固态电解质,对该固态电解质的微观结构进行了表征,并组装对称电池、全电池进行测试。结果表明:所制备的PVDF-HFP基固态电解质各组分相容性好,表面平整,结晶度低;得益于聚合物基团与LAGP活性位点对锂离子的有效促进,室温下锂离子电导率显著提高,达到7.02×10-4 S/cm;PAA 与锂金属的相互作用有效稳定了界面,LiPAG Li电池实现了在室温0.5mA/cm2 的高电流密度条件下长达700h的超长循环寿命;在全电池测试中,以0.5C的充放电倍率进行100圈循环后,电池仍保持了153.9mAh/g的放电比容量,容量保持率高达98.4%。该研究制备的PVDF-HFP基固态电解质与锂金属阳极的相容性得到有效提高,界面相容性问题得到改善,为其在实际应用领域的推广提供了实验思路。

参考文献/References:

  [1] Xiao J, Shi F, Glossmann T, et al. From laboratory innovations to materials manufacturing for lithium-based batteries[J]. Nature Energy, 2023, 8(4): 329-339.
[2] Liu Y, Meng X, Wang Z, et al. A Li2S-based all-solid-state battery with high energy and superior safety[J]. Science Advances, 2022, 8(1): eabl8390.
[3] Du G, Muhtar D, Cao J, et al. Solid-state composite electrolytes: Turning the natural moat into a thoroughfare[J]. Materials Chemistry Frontiers, 2024, 8(5): 1250-1281.
[4] Liu S, Zhou L, Zhong T, et al. Sulfide/polymer composite solid-state electrolytes for all-Solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(48): 2403602.
[5] Ma J, Zhong G, Shi P, et al. Constructing a highly efficient “solid-polymer-solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries[J]. Energy & Environmental Science, 2022, 15(4): 1503-1511.
[6] Bachman J C, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
[7] Wang C, Kim J T, Wang C, et al. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells[J]. Advanced Materials, 2023, 35(19): 2209074.
[8] Mazzapioda L, Tsurumaki A, Di Donato G, et al. Quasi-solid-state electrolytes-strategy towards stabilising Li inorganic solid electrolyte interfaces in solid-state Li metal batteries[J]. Energy Materials, 2023, 3(2): 1-3025.
[9] Wu J, Chen W, Hao B, et al. Garnet-type solid-state electrolytes: Crystal-phase regulation and interface modification for enhanced lithium metal batteries[J]. Small, 2025, 21(2): 2407983.
[10] Zhang J, Chou J, Luo X X, et al. A fully amorphous, dynamic cross-linked polymer electrolyte for lithium-sulfur batteries operating at subzero-temperatures[J]. Angewandte Chemie International Edition, 2024, 63(5): e202316087.
[11] Wang Z, Shen L, Deng S, et al. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries[J]. Advanced Materials, 2021, 33(25): 2100353.
[12] Yao P, Yu H, Ding Z, et al. Review on polymer-based composite electrolytes for lithium batteries[J]. Frontiers In Chemistry, 2019, 7: 522.
[13] Pershina S V, Antonov B D. Glass-ceramics based on Li1.5Al0.5Ge1.5(PO4)3 for advanced all-solid-state batteries[J]. Journal of Physics: Conference Series. IOP Publishing, 2021, 1967(1): 012014.
[14] Chen C H, Xie S, Sperling E, et al. Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system[J]. Solid State Ionics, 2004, 167(3-4): 263-272.
[15] Li Y, Han J T, Wang C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.
[16] Zhu L, Li J, Jia Y, et al. Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte[J]. International Journal of Energy Research, 2020, 44(13): 10168-10178.
[17] Appetecchi G B, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methyl methacrylate)-based gel electrolytes[J]. Electrochimica Acta, 1995, 40(8): 991-997.
[18] Luo K, Shao D, Yang L, et al. Semi-interpenetrating gel polymer electrolyte based on PVDF-HFP for lithium ion batteries[J]. Journal of Applied Polymer Science, 2021, 138(11): 49993.
[19] Liu X, Liu J, Lin B, et al. PVDF-HFP-based composite electrolyte membranes having high conductivity and lithium-ion transference number for lithium metal batteries[J]. ACS Applied Energy Materials, 2021, 5(1): 1031-1040.
[20] Chattopadhyay J, Pathak T S, Santos D M F. Applications of polymer electrolytes in lithium-ion batteries: A review[J]. Polymers, 2023, 15(19): 3907.
[21] Pan K, Zhang L, Qian W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): 2000399.
[22] Zhang W, Koverga V, Liu S, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024, 9(4): 386-400.
[23] Lin D, Liu W, Liu Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465.
[24] Yao X, Song X, Zhang F, et al. Enhancing cellulose-based separator with polyethyleneimine and polyvinylidene fluoride-hexafluoropropylene interpenetrated 3D network for lithium metal batteries[J]. ChemElectroChem, 2022, 9(12): e202200390.
[25] Li J, Bi S, Li M, et al. Rapid homogenization preparation of the mussel-inspired hydrophilic separator for high power lithium-ion batteries[J]. Journal of Applied Polymer Science, 2020, 137(36): 49052.
[26] Zhong L, Sun Y, Shen K, et al. Poly(acrylic acid)-based polymer binders for high-performance lithium-ion batteries: from structure to properties[J]. Small, 2024, 20(51): 2407297.
[27] Xu R, Sheng L, Gong H, et al. High-performance Al2O3/PAA Li composite separator prepared by water-based slurry for high-power density lithium-based battery[J]. Advanced Engineering Materials, 2021, 23(3): 2001009.
[28] Huang W P, Qian H L, Wang J, et al. Periodic stratified porous structures in dynamic polyelectrolyte films through standing-wave optical crosslinking for structural color[J]. Advanced Science, 2021, 8(15): 2100402.
[29] Sawut A, Simayi R, Zhang X, et al. Preparation, properties, self crosslinking mechanism, and characterization of UV initiated polyacrylic acid superabsorbent resins[J]. Polymers for Advanced Technologies, 2022, 33(10): 3666-3680.
[30] Liang M, Zhu Y, Xu R, et al. Polyacrylic acid ultra-thin films: Influence of cross-linking structure via hyperthermal hydrogen-induced cross-linking[J]. Journal of Applied Polymer Science, 2022, 139(46): e53144.
[31] Gu Y, Liu F, Liu G. Preparation of new composite electrolytes for solid-state lithium rechargeable batteries by compounding LiTFSI, PVDF-HFP and LLZTO[J]. International Journal of Electrochemical Science, 2020, 15(12): 11986-11996.
[32] Li J, Zheng W, Zhu L, et al. Incorporating lithium magnesium silicate into PVDF-HFP based solid electrolyte to achieve advanced solid-state lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 960: 170640.
[33] Zou J, Gao X, Zhou X, et al. Al and Ta co-doped LLZO as active filler with enhanced Li+ conductivity for PVDF-HFP composite solid-state electrolyte[J]. Nanotechnology, 2023, 34(15): 155402.
[34] Zhu L, Xie H, Zheng W, et al. Multi-component solid PVDF-HFP/PPC/LLTO-nanorods composite electrolyte enabling advanced solid-state lithium metal batteries[J]. Electrochimica Acta, 2022, 435: 141384.
[35] Baskaran V, Usha Rani M. A free-standing CaO infused PVdF-HFP/PMMA polymer-nanocomposite as solid-state electrolytes for energy storage applications[J]. Ionics, 2024, 30: 6061-6071.
[36] Li J, Zhu L, Xie H, et al. Graphitic carbon nitride assisted PVDF-HFP based solid electrolyte to realize high performance solid-state lithium metal batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 130520.

相似文献/References:

[1]王莹莹,郭绍义,袁永锋,等.CNT环绕生长NiO纳米片材料的制备和锂离子电池性能研究[J].浙江理工大学学报,2018,39-40(自科2):176.
 WANG Yingying,GUO Shaoyi,YUAN Yongfeng,et al.Preparation of CNT surrounded nionanosheet material and study on properties of lithium ion batteries[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科六):176.
[2]张天宇,袁永锋,郭邵义,等.MoS-2纳米片@碳纳米管中管复合材料的制备及其锂离子电池性能[J].浙江理工大学学报,2019,41-42(自科四):440.
 ZHANG Tianyu,YUAN Yongfeng,GUO Shaoyi,et al.Preparation of MoS-2 nanosheetswrapped carbon nanotubeinnanotube and performance of lithium ion batteries[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):440.
[3]彭兴元,袁永锋,郭绍义,等.核壳型ZIF-67派生非晶C压缩多面体@MnO-2纳米片阵列复合材料的制备及其锂离子电池性能[J].浙江理工大学学报,2019,41-42(自科四):447.
 PENG Xingyuan,YUAN Yongfeng,GUO Shaoyi,et al.Preparation of coreshell amorphous C polyhedron derived from  ZIF-67@MnO-2 nanosheet array composite and performance  of lithiumion batteries[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):447.
[4]吴帆,袁永锋.二硫化钴@二硫化钴/硫化锌/聚多巴胺蛋黄多层异质壳微球的制备及储锂性能[J].浙江理工大学学报,2024,51-52(自科五):609.
 WU Fan,YUAN Yongfeng.Preparation and lithium storage properties of CoS 2@CoS 2/ZnS/PDA  microspheres with yolk multilayered heterogeneous shell structure[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):609.

备注/Memo

备注/Memo:
收稿日期 :2025-03-03
网络出版日期 :2025-05-07
基金项目 : 国家自然科学基金项目 (22379160)
作者简介 : 童敏飞 (2000— ), , 浙江淳安人 , 硕士研究生 , 主要从事锂离子电池方面的研究
通信作者:叶方敏,E-ail:fmye2018@zstu.edu.cn
更新日期/Last Update: 2025-11-21