|本期目录/Table of Contents|

[1]吕柳明,董琦,陈云富,等.热压制备TiCx/SiC复合材料的微观结构及力学性能[J].浙江理工大学学报,2025,53-54(自科六):743-752.
 LÜ Liuming,DONG Qi,CHEN Yunfu,et al.Microstructure and mechanical properties of TiCx/SiC composites prepared by hot pressing[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):743-752.
点击复制

热压制备TiCx/SiC复合材料的微观结构及力学性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
743-752
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
Microstructure and mechanical properties of TiCx/SiC composites prepared by hot pressing
文章编号:
1673-3851(2025)11-0743-10
作者:
吕柳明董琦陈云富李浩林
1.浙江理工大学材料科学与工程学院,杭州310018;2.浙江工业大学教育学院,杭州310014
Author(s):
LÜ Liuming DONG Qi CHEN Yunfu LI Haolin
1. School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2. College of Education, Zhejiang University of Technology, Hangzhou 310014, China
关键词:
SiC陶瓷原位TiCx烧结温度力学性能烧结机理
分类号:
TB383
文献标志码:
A
摘要:
为了提升SiC陶瓷的强韧性,采用Ti3AlC2 层状陶瓷颗粒作为前驱体原料,将其与SiC粉体混合,并通过热压烧结工艺,原位引入一种具有特殊结构、尺寸以及表面润湿特性的第二相陶瓷增强体TiCx。探究不同烧结温度(1550~1950℃)对复合材料致密度、物相分布、微观组织及力学行为的影响,优化制备工艺并筛选出具备组织结构和力学性能最优的TiCx/SiC复合材料。结果表明:烧结温度为1850℃的样品综合力学性能最佳,其抗弯强度、断裂韧性及维氏硬度分别高达575.67MPa、8.83MPa·m1/2 和28.59GPa。复合材料的烧结机理及强韧化机制与多种因素密切相关,包括Ti3AlC2 特殊结构在不同温度下的分解状态,原位自生 TiCx 的弥散,单质 Al的扩散、转化和逃逸等。该研究对改进陶瓷及其复合材料的固相烧结方法以及拓宽SiC材料的工程应用具有借鉴和指导意义。

参考文献/References:

[1] Yoon D H, Reimanis I E. A review on the joining of SiC for high-temperature applications[J]. Journal of the Korean Ceramic Society, 2020, 57(3): 246-270.
[2] An Q L, Chen J, Ming W W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 540-567.
[3] Chen Z B, Huang A Q. High performance SiC power module based on repackaging of discrete SiC devices[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9306-9310.
[4] Hashim A, Hadi A, Abbas M H. Fabrication and unraveling the morphological, optical and electrical features of PVA/SnO2/SiC nanosystem for optics and nanoelectronics applications[J]. Optical and Quantum Electronics, 2023, 55(7): 642.
[5] Wang X L, Gao X D, Zhang Z H, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688.
[6] Daviau K, Lee K K M. High-pressure, high-temperature behavior of silicon carbide: A review[J]. Crystals, 2018, 8(5): 217.
[7] 于宏林, 李涵, 徐鸿照. 碳化硅陶瓷固相烧结的烧结机理及研究进展[J]. 现代技术陶瓷, 2014, 35(3): 19-23.
[8] Wang Z, Liu Y, Zou B, et al. Mechanical properties and microstructure of Al2O3-SiCw ceramic tool material toughened by Si3N4 particles[J]. Ceramics International, 2020, 46(7): 8845-8852.
[9] 曾凡. 反应烧结碳化硅陶瓷的制备及碳化硅纳米线增强研究[D]. 杭州: 浙江理工大学, 2018: 1-12.
[10] 吕学文. 碳化硅纳米颗粒增韧碳化硅陶瓷的制备及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 1-16.
[11] Shoulders W T, Guziewski M, Swab J J. Microstructural and thermal stress effects on mechanical properties of boron carbide particle-reinforced silicon carbide[J]. Journal of the American Ceramic Society, 2024, 107(2): 1249-1261.
[12] Jiang M, Zheng J W, Xiao H Y, et al. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC[J]. Scientific Reports, 2017, 7(1): 9344.
[13] 李少峰. 碳化硅陶瓷复合材料的制备及抗氧化行为[J]. 陶瓷学报, 2021, 42(6): 1018-1025.
[14] Khodaei M, Yaghobizadeh O, Safavi S A, et al. The effect of TiC additive with Al2O3-Y2O3 on the microstructure and mechanical properties of SiC matrix composites[J]. Advanced Ceramics Progress, 2020, 6(3): 15-24.
[15] Kennedy A R, Wyatt S M. Characterising particle-matrix interfacial bonding in particulate Al-TiC MMCs produced by different methods[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(3/4): 555-559.
[16] Fu S Y, Feng X Q, Lauke B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites[J]. Composites Part B: Engineering, 2008, 39(6): 933-961.
[17] Cheng Y, Bian L C, Wang Y Y, et al. Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites[J]. International Journal of Solids and Structures, 2014, 51(18): 3168-3176.
[18] Hu W Q, Huang Z Y, Cai L P, et al. Microstructural characterization and mechanical properties of a novel TiC-based cermet bonded with Ni3(Al,Ti) and NiAl duplex alloy[J]. Materials Characterization, 2018, 135: 295-302.
[19] Jiang J P, Li S B, Zhang W W, et al. In situ formed TiCx in high chromium white iron composites: Formation mechanism and influencing factors[J]. Journal of Alloys and Compounds, 2019, 788: 873-880.
[20] Zhang S T, Wang L K, Xu B L, et al. Rapid synthesis of Nd-doped Y3Fe5O12 garnet waste forms by microwave sintering[J]. Ceramics International, 2021, 47(15): 21924-21933.
[21] 万德田, 魏永金, 包亦望, 等. 陶瓷断裂韧性测试方法准确性和简便性比较分析[J]. 硅酸盐学报, 2019, 47: 1080-1088.
[22] Tzenov N V, Barsoum M W. Synthesis and characterization of Ti3AlC2[J]. Journal of the American Ceramic Society, 2000, 83(4): 825-832.
[23] Perevislov S N, Sokolova T V, Stolyarova V L. The Ti3SiC2 max phases as promising materials for high temperature applications: formation under various synthesis conditions[J]. Materials Chemistry and Physics, 2021, 267(124625).
[24] 孙小曼, 李蔚, 刘会娇, 等. 不同氧化铝前驱体相转过程的研究[J]. 华东理工大学学报(自然科学版), 2021, 47: 420-426.
[25] 史秀梅, 崔红, 曹剑武, 等. SiC陶瓷常压烧结致密化过程的研究[J]. 陶瓷学报, 2017, 38: 20-25.
[26] 杜玉辉, 汤振霄, 彭可, 等. B4C含量对ZrB2陶瓷微观结构及力学性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26: 77-83.
[27] Ke R, Hu C Y, Zhong M, et al. Grain refinement strengthening mechanism of an austenitic stainless steel: Critically analyze the impacts of grain interior and grain boundary[J]. Journal of Materials Research and Technology, 2022, 17: 2999-3012.
[28] Wang B, Cai D L, Wang H Y, et al. Microstructures and mechanical properties of B4C-SiC and B4C-SiC-TiB2 ceramic composites fabricated by hot pressing[J]. Journal of the American Ceramic Society, 2023, 106(8): 5046-5066.
[29] Zhang T, Chen J F, Zhang Y, et al. Elucidating the role of Ti3AlC2 and Ti3SiC2 in oxidation mechanisms of MgO-C refractories[J]. Ceramics International, 2023, 49(7): 11257-11265.
[30] Topcu I, Gulsoy H O, Kadioglu N, et al. Processing and mechanical properties of B4C reinforced Al matrix composites[J]. Journal of Alloys and Compounds, 2009, 482(1-2): 516-521.
[31] Patel M, Kiran M P S, Kumari S, et al. Effect of oxidation and residual stress on mechanical properties of SiC seal coated C/SiC composite[J]. Ceramics International, 2018, 44(2): 1633-1640.
[32] Dong Y L, Xu F M, Shi X L, et al. Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites[J]. Materials Science and Engineering: A, 2009, 504(1-2): 49-54.
[33] Pang W K, Low I M, Sun Z M. In situ high-temperature diffraction study of the thermal dissociation of Ti3AlC2 in vacuum[J]. Journal of the American Ceramic Society, 2010, 93(9): 2871-2876.
[34] Weber R, Sen S, Youngman R E, et al. Structure of high alumina content Al2O3-SiO2 composition glasses[J]. The Journal of Physical Chemistry B, 2008, 112(51): 16726-16733.
[35] Fitriani P, Min B K, Yoon D H. Solid-state joining of SiC using a thin Ti3AlC2, TiC, or Ti filler[J]. Journal of the European Ceramic Society, 2020, 40(7): 2716-2720.
[36] Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge[J]. Corrosion Science, 2019, 156: 147-160.
[37] Koli D K, Agnihotri G, Purohit R. A review on properties, behaviour and processing methods for Al-nano Al2O3 composites[J]. Procedia Materials Science, 2014, 6: 567-589.
[38] Wang Y P, Liu X H, Chen X Y, et al. Evolution of phase composition and microstructure of commercial Al2O3 gel in different heat treatment condition[J]. Ceramics International, 2018, 44(7): 7883-7890.
[39] So S M, Choi W H, Kim K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering[J]. Ceramics International, 2020, 46(7): 9575-9581.
[40] Yu P, Mei Z, Tjong S C. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles[J]. Materials Chemistry and Physics, 2005, 93(1): 109-116.
[41] Smirnov B I, Nikolaev V I, Orlova T S, et al. Mechanical properties and microstructure of an Al2O3-SiC-TiC composite[J]. Materials Science and Engineering: A, 1998, 242(1-2): 292-295.

备注/Memo

备注/Memo:
收稿日期:2025-02-20 网络出版日期:2025-04-29基金项目:浙江省自然科学基金项目(LQ23E020008);浙江理工大学科研启动基金项目(22212153-Y)作者简介:吕柳明(1999— ),男,浙江丽水人,硕士研究生,主要从事先进陶瓷及其复合材料方面的研究。通信作者:李浩林,E-mail:haolinli@zstu.edu.cn
更新日期/Last Update: 2025-11-21