[1]Ganda S, Stenzel M H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers[J]. Progress in Polymer Science, 2020, 101: 101195.
[2]杨纤, 冯纯, 陆国林等. 结晶驱动自组装的研究进展[J]. 功能高分子学报, 2017, 30(1): 15-33.
[3]Gilroy J B, G dt T, Whittell G R, et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly[J]. Nature Chemistry, 2010, 2(7): 566-570.
[4]Hudson Z M, Boott C E, Robinson M E, et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions[J]. Nature Chemistry, 2014, 6(10): 893-898.
[5]Lin H Y, Zhou L Y, Mei F, et al. Highly Efficient self-Assembly of metallacages and their supramolecular catalysis behaviors in microdroplets[J]. Angewandte Chemie International Ed, 2023, 62(27): e202301900.
[6]冯宇. 基于吡啶-过渡金属离子配位的聚酰胺金属络合物的合成及性能研究[D]. 北京:北京化工大学, 2023: 60-80.
[7]Cheng J, Xu M, Cheng P P, et al. Metal ions ‘sewing’ isoporous membranes with polystyrene-block-poly (acrylic acid) block copolymer[J]. Journal of Membrane Science, 2019, 587: 117086.
[8]Nazemi A, He X M, MacFarlane L R, et al. Uniform “patchy” platelets by seeded heteroepitaxial growth of crystallizable polymer blends in two dimensions[J].Journal of the American Chemical Society, 2017, 139(12): 4409-4417.
[9]Tong Z Z, Xie Y J, Arno M C, et al. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores[J]. Nature Chemistry, 2023, 15: 824-831.
[10]He X M, He Y X, Hsiao M S, et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of poly( L -lactide) homopolymers with charged termini[J]. Journal of the American Chemical Society, 2017, 139(27): 9221-9228.