|本期目录/Table of Contents|

[1]张轩宇,徐凌波.FCT-Net:基于CNN与Transformer双分支并行融合的斑马鱼心脏图像分割网络模型[J].浙江理工大学学报,2025,53-54(自科四):571-579.
 ZHANG Xuanyu,XU Lingbo.FCT-Net: A zebrafish heart image segmentation network model based on the parallel fusion of dual branches of CNN and Transformer[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科四):571-579.
点击复制

FCT-Net:基于CNN与Transformer双分支并行融合的斑马鱼心脏图像分割网络模型()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第四期
页码:
571-579
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
FCT-Net: A zebrafish heart image segmentation network model based on the parallel fusion of dual branches of CNN and Transformer
文章编号:
1673-3851 (2025) 07-0571-09
作者:
张轩宇徐凌波
 1.浙江理工大学理学院,杭州 310018;2.浙江大学流体动力基础件与机电系统全国重点实验室,杭州 310027
Author(s):
ZHANG XuanyuXU Lingbo
1.School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
关键词:
斑马鱼心脏图像CNNTransformer多尺度特征融合
分类号:
TP399
文献标志码:
A
摘要:
为了解决斑马鱼心脏图像轮廓模糊导致的医学图像分割精度不足问题,提出了一种融合CNN与Transformer的新型网络模型——FCTNet(Fusion convolutiontransformer network)。该模型基于经典的编码器解码器架构,构建了双分支并行特征融合模块,其中:CNN分支用于提取局部组织特征,并针对单一卷积核难以覆盖多尺度特征的局限,在卷积模块中引入多尺度特征融合机制,构建多感受野特征金字塔,以增强对边缘细节的表征能力;Transformer分支用于捕捉长距离的全局上下文依赖关系,实现局部特征与全局语义的有效融合。实验结果表明,FCT Net在斑马鱼心脏图像分割任务中的准确率较基准UNet模型提升了5.8%,有效提高了心脏轮廓分割精度。该模型具备高精度的斑马鱼心脏分割能力,可以为后续基于斑马鱼心脏形态学特征的药物筛选研究提供较为可靠的算法支撑。

参考文献/References:

[1]马海钢,吴家辉,朱亚辉,等.面向先进生物医学应用的光声显微成像术(特邀)[J].激光与光电子学进展,2024,61(6):115-144.
[2]蔡海丽,张晓朦,刘亚迪,等.药源性心脏毒性模型的构建与评价进展[J].中国药物警戒,2024, 21(7):765-770.
[3]Castranova D, Samasa B, Venero Galanternik M, et al. Long-term imaging of living adult zebrafish[J]. Development, 2022, 149(4): dev199667.
[4]Hasani H, Sun J, Zhu S I, et al. Whole-brain imaging of freely-moving zebrafish[J]. Frontiers in Neuroscience, 2023, 17: 1127574.
[5]李浩宇,曲丽颖,华子杰,等.基于深度学习的荧光显微成像技术及应用[J].激光与光电子学进展,2021,58(18):185-204.
[6]Zhang B, Pas K E, Ijaseun T, et al. Automatic segmentation and cardiac mechanics analysis of evolving zebrafish using deep learning[J]. Frontiers in Cardiovascular Medicine, 2021, 8: 675291.
[7]Naderi A M, Bu H, Su J, et al. Deep learning-based framework for cardiac function assessment in embryonic zebrafish from heart beating videos[J]. Computers in Biology and Medicine, 2021, 135: 104565.
[8]Wang N, Dong G, Qiao R, et al. Bringing artificial Intelligence (AI) into environmental toxicology studies: A perspective of AI-enabled zebrafish high-throughput screening[J]. Environmental Science & Technology, 2024, 58(22): 9487-9499.
[9]Kim J, Yuk H, Choi B, et al. New machine learning-based automatic high-throughput video tracking system for assessing water toxicity using Daphnia Magna locomotory responses[J]. Scientific Reports, 2023, 13: 3530.
[10]Wang B, Sun Q, Liu Y, et al. Intelligent larval zebrafish phenotype recognition via attention mechanism for high-throughput screening[J]. Computers in Biology and Medicine, 2025, 188: 109892.

相似文献/References:

[1]朱晓宇,刘洪翠,俞航萍,等.神香苏合丸防治心血管疾病的实验研究[J].浙江理工大学学报,2016,35-36(自科4):630.
 ZHU Xiaoyu,LIU Hongcui,YU Hangping,et al.Experimental Study on Therapeutic Effects of Shenxiang Suhe Pill on Cardiovascular Diseases[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科四):630.

备注/Memo

备注/Memo:
收稿日期: 2025-03-18
网络出版日期:2025-04-29
基金项目: 流体动力基础件与机电系统全国重点实验室开放基金项目(GZKF-202313)
作者简介: 张轩宇(2000—),男,江苏淮安人,硕士研究生,主要从事人工智能在生物医学中的应用方面的研究
通信作者: 徐凌波,E-mail:xlb@zstu.edu.cn
更新日期/Last Update: 2025-07-08