|本期目录/Table of Contents|

[1]赖诗宇,罗和治.带基数约束凸优化问题的序列凸优化算法[J].浙江理工大学学报,2025,53-54(自科三):425-431.
 LAI Shiyu,LUO Hezhi.Successive convex optimization algorithm for convex optimization problems with cardinality constraints[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科三):425-431.
点击复制

带基数约束凸优化问题的序列凸优化算法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第三期
页码:
425-431
栏目:
出版日期:
2025-05-05

文章信息/Info

Title:
Successive convex optimization algorithm for convex optimization problems with cardinality constraints
文章编号:
1673-3851 (2025) 05-0425-07
作者:
赖诗宇罗和治
浙江理工大学理学院,杭州 310018
Author(s):
LAI Shiyu LUO Hezhi
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
凸优化基数约束序列凸优化DC逼近KKT点
分类号:
O224
文献标志码:
A
摘要:
针对带基数约束凸优化问题,提出了一个基于非线性DC(Difference of two convex functions)逼近函数的序列凸优化算法,并证明了该算法收敛到DC逼近问题的KKT (Karush Kuhn Tucker)点。数值实验结果表明:基于非线性DC逼近函数的序列凸优化算法能有效找到带基数约束凸优化问题的稀疏解,且得到解的质量优于已有算法。

参考文献/References:

[1]Gao J J, Li D. Optimal cardinality constrained portfolio selection[J]. Operations Research, 2013, 61(3): 745-761.
[2]Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710.
[3]Blumensath T. Compressed sensing with nonlinear observations and related nonlinear optimization problems [J]. IEEE Transactions on Information Theory, 2013, 59(6): 3466-3474.
[4]Elad M, Figueiredo M A T, Ma Y. On the role of sparse and redundant representations in image processing [J]. Proceedings of the IEEE, 2010, 98(6): 972-982.
[5]Bienstock D. Computational study of a family of mixed-integer quadratic programming problems[J]. Mathematical Programming, 1996, 74(2): 121-140.
[6]赵晨,罗自炎,修乃华. 稀疏优化理论与算法若干新进展[J]. 运筹学学报, 2020, 24(4): 1-24.
[7]Bertsimas D, Shioda R. Algorithm for cardinality-constrained quadratic optimization[J]. Computational Optimization and Applications, 2009, 43(1): 1-22.
[8]Candès E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[9]Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review, 2009, 51(1): 34-81.
[10]Mangasarian O L. Minimum-support solutions of polyhedral concave programs[J]. Optimization, 1999, 45(1/2/3/4): 149-162.

备注/Memo

备注/Memo:
收稿日期: 2022-12-10
网络出版日期:2023-01-17
基金项目: 国家自然科学基金项目(12271485,11871433);浙江省自然科学基金项目(LZ21A010003)
作者简介: 赖诗宇(1996-),女,四川绵阳人,硕士研究生,主要从事最优化理论与算法方面的研究
通信作者: 罗和治,E-mail:hzluo@zstu.edu.cn
更新日期/Last Update: 2025-05-06