|本期目录/Table of Contents|

[1]钱多,古杰燕,柯丽萍,等.陆地棉响应干旱胁迫的扩展蛋白基因GhEXLB1功能分析[J].浙江理工大学学报,2025,53-54(自科二):263-269.
 QIAN Duo,GU Jieyan,KE Liping,et al.Functional analysis of expansin gene GhEXLB1  in response to drought stress in Gossypium hirsutum[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科二):263-269.
点击复制

陆地棉响应干旱胁迫的扩展蛋白基因GhEXLB1功能分析()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第二期
页码:
263-269
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Functional analysis of expansin gene GhEXLB1  in response to drought stress in Gossypium hirsutum
文章编号:
1673-3851 (2025) 03-0263-07
作者:
钱多古杰燕柯丽萍赵艳艳
浙江理工大学生命科学与医药学院,杭州 310018
Author(s):
QIAN Duo GU Jieyan KE Liping ZHAO Yanyan
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
陆地棉表达模式GhEXLB1下调表达干旱胁迫
分类号:
S330-2
文献标志码:
A
摘要:
中国棉花主产区为新疆,该地区夏季晴热少雨导致的干旱严重影响棉花纤维的产量和品质,挖掘陆地棉响应干旱的功能基因对培育棉花抗旱品种、保障棉花增产稳产具有重要作用。分析陆地棉干旱胁迫转录组数据,获得陆地棉干旱胁迫响应基因GhEXLB1,并测定该基因响应干旱胁迫的表达模式;采用病毒诱导的基因沉默技术下调GhEXLB1表达量,并分析GhEXLB1沉默棉花的干旱胁迫相关的生理生化指标。结果表明:在陆地棉Expansin基因家族中,51个基因在干旱处理后表达差异显著,其中42个上调表达,9个下调表达。GhEXLB1响应干旱胁迫明显,表达水平相较干旱处理前变化最大,干旱处理6 h后该基因表达量较处理前升高了9.5倍;GhEXLB1下调表达植株对干旱胁迫的耐受性显著低于对照植株,成活率约为45%;干旱胁迫下GhEXLB1沉默植株中活性氧清除系统相关酶活性显著改变,与对照相比,GhEXLB1下调表达棉花丙二醛含量显著上升、过氧化氢酶活性显著上升、过氧化物酶和超氧化物歧化酶活性显著降低。该结果为进一步挖掘棉花响应干旱胁迫功能基因和培育耐旱新品种提供了新的理论依据。

参考文献/References:

[1]国家统计局. 国家统计局关于2023年棉花产量的公告. (2023-12-25). [2024-06-10].
[2]Yang Z E, Gao C X, Zhang Y H, et al. Recent progression and future perspectives in cotton genomic breeding[J]. Journal of Integrative Plant Biology, 2023, 65(2): 548-569.
[3]Li F J, Li M Y, Wang P, et al. Regulation of cotton ( Gossypium hirsutum ) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59[J]. New Phytologist, 2017, 215(4): 1462-1475.
[4]He L R, Yang X Y, Wang L C, et al. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK 6 ) reveals its involvement in multiple abiotic stress tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications, 2013, 435(2): 209-215.
[5]Wang C, Lu W J, He X W, et al. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth[J]. Plant & Cell Physiology, 2016, 57(8): 1629-1642.
[6]Chen T Z, Li W J, Hu X H, et al. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress[J]. Plant & Cell Physiology, 2015, 56(5): 917-929.
[7]Guo Y N, Pang C Y, Jia X Y, et al. An NAM domain gene, GhNAC 79 , improves resistance to drought stress in Upland cotton[J]. Frontiers in Plant Science, 2017, 8: 1657.
[8]Chen Y H, Han Y Y, Zhang M, et al. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants[J]. PLoS One, 2016, 11(4): e0153494.
[9]Yang J J, Zhang G Q, An J, et al. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat ( Triticum aestivum L.)[J]. Plant Science: an International Journal of Experimental Plant Biology, 2020, 298: 110596.
[10]施杨, 徐筱, 李昊阳, 等. 水稻扩展蛋白家族的生物信息学分析[J]. 遗传, 2014, 36(8): 809-820.

备注/Memo

备注/Memo:
收稿日期: 2024-06-14
网络出版日期: 网络出版日期2024-09-13
基金项目: 国家自然科学基金项目(32101683)
作者简介: 钱多(2000—),女,黑龙江鸡西人,硕士研究生,主要从事植物逆境方面的研究
通信作者: 赵艳艳,E-mail:zhaoyanyanhao@163.com
更新日期/Last Update: 2025-03-06