[ 1 ] Markowitz H M. Portfolio selection [ J ] . The Journal of Finance, 1952, 7(1): 77
-
91.
[
2
]
Chopra V K, Ziemba W T. The effect of errors in means, variances, and covariances on optimal portfoliochoice
[
J
]
. The Journal of Portfolio Management, 1993, 19(2): 6
-
11.
[
3
]
Goldfarb D, Iyengar G. Robust portfolio selection problems
[
J
]
. Mathematics of Operations Research, 2003, 28(1): 1
-
38.
[
4
]
Scherer B. Can robust portfolio optimization help to build better portfolios
[
J
]
. Journal of Asset Management, 2007, 7(6): 374
-
387.
[
5
]
Cui X T, Zhu S S, Li D, et al. Mean
-
variance portfolio optimization with parameter sensitivity control
[
J
]
. Optimization Methods and Software, 2016, 31(4): 755
-
774.
[
6
]
Bai Y Q, Wei Y D, Li Q. An optimal trade
-
off model for portfolio selection with sensitivity of parameters
[
J
]
. Journal of Industrial & Management Optimization, 2017, 13(2): 947
-
965.
[
7
]
Peng J M, Zhu T, Luo H Z, et al. Semi
-
definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting
[
J
]
. Computational Optimization and Applications, 2015, 60(1): 171
-
198.
[
8
]
Parrilo P A. Semidefinite programming relaxations for semialgebraic problems
[
J
]
. Mathematical Programming, 2003, 96(2): 293
-
320.
[
9
]
Anstreicher K M. Semidefinite programming versus the reformulation
-
linearization technique for nonconvex quadratically constrained quadratic programming
[
J
]
. Journal of Global Optimization, 2009, 43(2): 471
-
484.
[
10
]
Zheng X J, Sun X L, Li D. Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations
[
J
]
. Journal of Global Optimization, 2011, 50(4): 695
-
712.
[1]王琳,洪陈春,罗和治.带参数敏感度的最优权衡投资组合问题的半定规划松弛[J].浙江理工大学学报,2024,51-52(自科六):861.
WANG Lin,HONG Chenchun,LUO Hezhi.Semi definite programming relaxation for optimal trade off portfolio selection with sensitivity of parameters[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):861.