[1]Dong Y, Zhai X, Wu Y, et al. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis[J]. Journal of Colloid and Interface Science, 2024, 658: 258-266.
[2]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238 (5358): 37-38.
[3]Cao Z, Feng Y, Zhang B, et al. Regulation of bubble behavior on a TiO 2 photoelectrode surface during photoelectrocatalytic water splitting[J]. The Journal of Physical Chemistry C, 2022, 126 (30): 12480-12491.
[4]Liu S, Zheng L, Yu P, et al. Novel composites of α-Fe 2O 3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances[J]. Advanced Functional Materials, 2016, 26 (19): 3331-3339.
[5]Xu X, Li S, Chen J, et al. Design principles and material engineering of ZnS for optoelectronic devices and catalysis[J]. Advanced Functional Materials, 2018, 28 (36): 1802029.
[6]Singla S, Devi P, Basu S. Revolutionizing the role of solar light responsive BiVO 4/BiOBr heterojunction photocatalyst for the photocatalytic deterioration of tetracycline and photoelectrocatalytic water splitting[J]. Materials, 2023, 16 (16): 5561-5581.
[7]Huerta A, Usiobo O, Audinot J, et al. Low temperature open-air plasma deposition of SrTiO 3 films for solar energy harvesting: Impact of precursors on the properties and performances[J]. ACS Appl Mater Interfaces, 2022, 14 (6): 8527-8536.
[8]周林林, 杨涛, 王恩会, 等. 碳化硅纳米线阵列基一体化光电阳极用于高效裂解水制氢[J]. 工程科学学报, 2023, 45 (7): 1149-1155.
[9]Giannazzo F, Panasci S, Schilirò E, et al. Integration of graphene and MoS 2 on silicon carbide: Materials science challenges and novel devices[J]. Materials Science in Semiconductor Processing, 2024, 174: 108220.
[10]Lauermann I, Memming R, Meissner D. Electrochemical properties of silicon carbide[J]. Journal of The Electrochemical Society, 1997, 144 (1): 73-80.