[1]Barhoum A, Sadak O, Acosta Ramirez I, et al. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges[J]. Advances in Colloid and Interface Science, 2023, 317: 102920.
[2]Owh C, Ho D, Loh X J, et al. Towards machine learning for hydrogel drug delivery systems[J]. Trends in Biotechnology, 2023, 41(4): 476-479.
[3]Ma C M, Gao X R, Yang Y, et al. The three-dimensional culture of L929 and C2C12 cells based on SPI-SA interpenetrating network hydrogel scaffold with excellent mechanical properties[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1329183.
[4]Koshut W J, Kwon N, Zhao J, et al. Flaw sensitivity and tensile fatigue of a high-strength hydrogel[J]. International Journal of Fatigue, 2022, 163: 107071.
[5]Su Z K, Xue B B, Xu C, et al. Mussel-inspired calcium alginate/polyacrylamide dual network hydrogel: A physical barrier to prevent postoperative re-adhesion[J]. Polymers, 2023, 15(23): 4498.
[6]李冰, 徐艺洲, 魏巍, 等. 海藻酸钙/聚(N-异丙基丙烯酰胺)互穿网络水凝胶的药物释放及抗菌性能[J]. 浙江理工大学学报(自然科学版), 2018, 39(6): 715-722.
[7]Li K, Zhu Y T, Zhang Q, et al. Interstitial injection of hydrogels with high-mechanical conductivity relieves muscle atrophy induced by nerve injury[J]. Advanced Healthcare Materials, 2023, 12(24): e2202707.
[8]Chen Z H, Fan S T, Qiu Z J, et al. Tough double-network elastomers with slip-rings[J]. Polymer Chemistry, 2021, 12(21): 3142-3152.
[9]Tang Q, Zhao D L, Zhou Q, et al. Polyhistidine-based metal coordination hydrogels with physiologically relevant pH responsiveness and enhanced stability through a novel synthesis[J]. Macromolecular Rapid Communications, 2018, 39(11): e1800109.
[10]Li J Y, Zhao Z L, Kim E, et al. Network-based redox communication between abiotic interactive materials[J]. iScience, 2022, 25(7): 104548.