|本期目录/Table of Contents|

[1]余兆勇,王诗雯,王莉莉,等.聚吡咯改性钛酸钡纳米颗粒/聚偏氟乙烯复合压电薄膜的制备及性能分析[J].浙江理工大学学报,2024,51-52(自科四):466-473.
 YU Zhaoyong,WANG Shiwen,WANG Lili,et al.Preparation of polypyrrole modified barium titanate nanoparticles/polyvinylidene fluoride composite piezoelectric films and  their performance analysis[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科四):466-473.
点击复制

聚吡咯改性钛酸钡纳米颗粒/聚偏氟乙烯复合压电薄膜的制备及性能分析()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第51-52卷
期数:
2024年自科第四期
页码:
466-473
栏目:
出版日期:
2024-07-10

文章信息/Info

Title:
Preparation of polypyrrole modified barium titanate nanoparticles/polyvinylidene fluoride composite piezoelectric films and  their performance analysis
文章编号:
1673-3851 (2024)04-0466-08
作者:
余兆勇王诗雯王莉莉王懿佳余德游吴明华
浙江理工大学,a.纺织科学与工程学院(国际丝绸学院);b.先进纺织材料与制备技术教育部重点实验室;c.生态染整技术教育部工程研究中心;d.绿色低碳染整技术浙江省工程研究中心,杭州 310018
Author(s):
YU Zhaoyong WANG Shiwen WANG Lili WANG Yijia YU Deyou WU Minghua
a.College of Textile Science and Engineering (International Institute of Silk); b.Key Laboratory of  Advanced Textile Materials and Manufacturing Technology, Ministry of Education; c.Engineering  Research Center for Eco Dyeing & Finishing of Textiles, Ministry of Education; d.Zhejiang Provincial Engineering Research Center for Green and Low carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
钛酸钡聚偏氟乙烯聚吡咯静电纺丝压电纳米发电机
分类号:
TQ342
文献标志码:
A
摘要:
为解决钛酸钡(BT)/聚偏氟乙烯(PVDF)复合材料中两相材料间介电差异较大和BT难极化的问题,先以吡咯(Py)为聚合单体,通过细乳液聚合法制备聚吡咯改性BT(记作BT@PPy)纳米颗粒,然后将此作为纺丝液组分,利用静电纺丝法构筑BT@PPy/PVDF复合压电薄膜;进一步将铜箔电极贴于复合压电薄膜上下表面,制备BT@PPy/PVDF压电纳米发电机。采用FT IR、TEM和XRD等手段分析BT@PPy纳米颗粒的结构和形貌,测试复合压电薄膜的压电常数和压电纳米发电机的输出电压。结果表明:聚吡咯PPy成功包覆BT纳米颗粒,形成核壳结构;添加质量分数为1%的BT@PPy纳米颗粒填料,静电纺丝所得复合压电薄膜的剩余极化由未改性前的0.125 μC/cm2提升至0.472 μC/cm2,压电常数从12 pC/N增加到23.2 pC/N;所制纳米发电机输出电压从0.2 V提升到2.5 V,对外部压力具有良好敏感度感知感知敏感。聚吡咯对BT纳米颗粒的改性,提升了BT/PVDF复合压电层中BT的极化程度和压电层的压电常数,从而提高了所制压电纳米发电机的输出电压。研究结果可为制备高压电输出的压电纳米发电机提供有益参考。

参考文献/References:

[1]DengW L, Zhou Y H, Libanori A, et al. Piezoelectric nanogenerators for personalized healthcare[J]. Chemical Society Reviews, 2022, 51(9): 3380-3435.
[2]XuQ, Wen J, Qin Y. Development and outlook of high output piezoelectric nanogenerators[J]. Nano Energy, 2021, 86: 106080.
[3]王中林. 压电电子学效应及纳米发电机带来能源与传感新革命[J]. 科技导报, 2022, 40(17): 1-2.
[4]王中林. 纳米发电机作为可持续性电源与有源传感器的商业化应用[J]. 中国科学: 化学, 2013, 43(6): 759-762.
[5]AthiraB S, George A, Vaishna Priya K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO 3 nanofibers for self-powered vibration sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44239-44250.
[6]MahantyB, Ghosh S K, Lee D W. High-performance polyaniline-coated electrospun P(VDF-TrFE)/BaTiO 3 nanofiber-based flexible piezoelectric nanogenerator[J]. Materials Today Nano, 2023, 24: 100421.
[7]ShiK M, Huang X Y, Sun B, et al. Cellulose/BaTiO 3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity[J]. Nano Energy, 2019, 57: 450-458.
[8]LuL J, Ding W Q, Liu J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[9]ChiQ G, Liu G, Zhang C H, et al. Microstructure and dielectric properties of BZT-BCT/PVDF nanocomposites[J]. Results in Physics, 2018, 8: 391-396.
[10]SilakaewK, Swatsitang E, Thongbai P. Novel polymer composites of RuO 2@nBaTiO 3/PVDF with a high dielectric constant[J]. Ceramics International, 2022, 48(13): 18925-18932.

备注/Memo

备注/Memo:
收稿日期: 2023-12-13
网络出版日期:2024-03-14
作者简介: 余兆勇 (1998—),男,安徽池州人,硕士研究生,主要从事功能性纺织品开发方面的研究通信作者: 吴明华,E-mail:wmh@zstu.edu.cn
更新日期/Last Update: 2024-08-01