[1]DengW L, Zhou Y H, Libanori A, et al. Piezoelectric nanogenerators for personalized healthcare[J]. Chemical Society Reviews, 2022, 51(9): 3380-3435.
[2]XuQ, Wen J, Qin Y. Development and outlook of high output piezoelectric nanogenerators[J]. Nano Energy, 2021, 86: 106080.
[3]王中林. 压电电子学效应及纳米发电机带来能源与传感新革命[J]. 科技导报, 2022, 40(17): 1-2.
[4]王中林. 纳米发电机作为可持续性电源与有源传感器的商业化应用[J]. 中国科学: 化学, 2013, 43(6): 759-762.
[5]AthiraB S, George A, Vaishna Priya K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO 3 nanofibers for self-powered vibration sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44239-44250.
[6]MahantyB, Ghosh S K, Lee D W. High-performance polyaniline-coated electrospun P(VDF-TrFE)/BaTiO 3 nanofiber-based flexible piezoelectric nanogenerator[J]. Materials Today Nano, 2023, 24: 100421.
[7]ShiK M, Huang X Y, Sun B, et al. Cellulose/BaTiO 3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity[J]. Nano Energy, 2019, 57: 450-458.
[8]LuL J, Ding W Q, Liu J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[9]ChiQ G, Liu G, Zhang C H, et al. Microstructure and dielectric properties of BZT-BCT/PVDF nanocomposites[J]. Results in Physics, 2018, 8: 391-396.
[10]SilakaewK, Swatsitang E, Thongbai P. Novel polymer composites of RuO 2@nBaTiO 3/PVDF with a high dielectric constant[J]. Ceramics International, 2022, 48(13): 18925-18932.