|本期目录/Table of Contents|

[1]程嘉伟,江国华.聚乙醇酸/脂肪族聚酯复合材料的制备及其性能分析[J].浙江理工大学学报,2024,51-52(自科三):280-291.
 CHENG Jiawei,JIANG Guohua.Preparation of polyglycolic acid/aliphatic polyester composites and their property analysis[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科三):280-291.
点击复制

聚乙醇酸/脂肪族聚酯复合材料的制备及其性能分析()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第51-52卷
期数:
2024年自科第三期
页码:
280-291
栏目:
出版日期:
2024-05-10

文章信息/Info

Title:
Preparation of polyglycolic acid/aliphatic polyester composites and their property analysis
文章编号:
1673-3851 (2024) 05-0280-12
作者:
程嘉伟江国华
1.浙江理工大学材料科学与工程学院,杭州 310018;2.浙江省智能生物材料与功能纤维国际科技合作基地,杭州 310018
Author(s):
CHENG Jiawei JIANG Guohua
1.College of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
关键词:
聚乙醇酸脂肪族聚酯熔融共混降解速率力学性能
分类号:
TQ323-4;TB332
文献标志码:
A
摘要:
为了改善聚乙醇酸(PGA)复合材料在常温下的降解和力学性能,以PGA为原料、脂肪族聚酯(聚酯-A)为填料,通过熔融共混法制备了PGA/聚酯-A复合材料,并分析了聚酯-A质量分数对于复合材料力学性能和降解速率的影响。结果表明:当聚酯-A 质量分数为15%时,复合材料的拉伸应力和断裂伸长率分别达到89.18 MPa和4.21%,相较于PGA分别增加了117.19%和120.42%;复合材料样条降解30 d后质量损失为4.13% ,相较于PGA下降了61.62%;随着聚酯A质量分数的增加,复合材料中PGA组分结晶度先降低后增加,复合材料的拉伸强度先增加后减小、断裂伸长率逐渐增加、降解速率逐渐降低、亲水性增加;在复合材料样条断面观察到“海岛”结构的微观形态,并且随着聚酯A质量分数提高而更加明显地出现两个组分之间的相分离现象。PGA/聚酯-A复合材料可以有效改善PGA在常温下的力学和降解性能,研究可为制备兼具高力学性能和低降解速率的PGA基复合材料提供理论参考。

参考文献/References:

[1]Haider T P, Vlker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie-International Edition, 2019, 58(1): 50-62.
[2]Wang X H. Biodegradable polymers, history tells polymer science’s fortune[J]. Chinese Journal of Polymer Science, 2022, 40(5): 431-432.
[3]Low Y J, Andriyana A, Ang B C, et al. Bioresorbable and degradable behaviors of PGA: Current state and future prospects[J]. Polymer Engineering & Science, 2020, 60(11): 2657-2675.
[4]Budak K, Sogut O, Sezer U. A review on synthesis and biomedical applications of polyglycolic acid[J]. Journal of Polymer Research, 2020, 27(8): 1-19.
[5]Nishimura F, Hoshina H, Ozaki Y, et al. Isothermal crystallization of poly(glycolic acid) studied by terahertz and infrared spectroscopy and SAXS/WAXD simultaneous measurements[J]. Polymer Journal, 2019, 51(2): 237-245.
[6]Athanasiou K A, Niederauer G G, Agrawal C M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers[J]. Biomaterials, 1996, 17(2): 93-102.
[7]Ulery B D, Nair L S, Laurencin C T. Biomedical applications of biodegradable polymers [J]. Journal of Polymer Science Part B Polymer Physics, 2011, 49(12):832-864.
[8]Chang L F, Zhou Y G, Ning Y, et al. Toughening effect of physically blended polyethylene oxide on polyglycolic acid[J]. Journal of Polymers and the Environment, 2020, 28(8): 2125-2136.
[9]Niu D, Xu P, Sun Z, et al. Superior toughened bio-compostable poly (glycolic acid)-based blends with enhanced melt strength via selective interfacial localization of in-situ grafted copolymers[J]. Polymer, 2021, 235: 124269.
[10]Pan H W, Wang Y, Jia S L, et al. Biodegradable poly (butylene adipate-co-terephthalate)/poly (glycolic acid) films: effect of poly (glycolic acid) crystal on mechanical and barrier properties[J]. Chinese Journal of Polymer Science, 2023,41(7): 1123-1132.

备注/Memo

备注/Memo:
收稿日期: 2023-08-28
网络出版日期:2023-12-12
基金项目: 浙江省自然科学基金华东医药企业创新发展联合基金(LHDMZ23H300003)
作者简介: 程嘉伟(1999—),男,山西大同人,硕士研究生,主要从事生物可降解材料方面的研究。
通信作者: 江国华,E-mail:ghjiang_cn@zstu.edu.cn
更新日期/Last Update: 2024-06-19