|本期目录/Table of Contents|

[1]赵国英,贺平安.基于改进的多元关联分析模型的多种精神疾病相关基因识别[J].浙江理工大学学报,2022,47-48(自科六):923-930.
点击复制

基于改进的多元关联分析模型的多种精神疾病相关基因识别()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第六期
页码:
923-930
栏目:
出版日期:
2022-11-10

文章信息/Info

Title:
Identification of multiple psychiatric disorders correlated genes based on an improved multivariate association analysis model
文章编号:
1673-3851 (2022) 11-0923-08
作者:
赵国英贺平安
浙江理工大学理学院,杭州 310018
Author(s):
ZHAO Guoying, HE Ping′an
关键词:
精神疾病多元关联分析MGAS模型显著基因数据填充
分类号:
O29
文献标志码:
A
摘要:
基于基因的多元关联分析(Multivariate gene-based association analysis,MGAS)模型能有效地识别基因与表型之间的相关性,然而现有MGAS模型在多元关联分析时会剔除很多相关性数值个数小于疾病种类数目的单核苷酸多态性(Single nucleotide polymorphism,SNP)位点。针对多元关联分析中潜在SNP位点缺失的问题,利用数据填充的方法改进了MGAS模型,并将其应用于6类精神疾病的基因与表型相关性的识别。通过对比改进的MGAS模型与原有模型得到的Top显著基因发现,改进的MGAS模型提高了多元关联分析与疾病相关基因的识别能力,有助于发现多种疾病间的潜在的风险基因,为疾病的预防、诊断和治疗研究提供新的工具和思路。

参考文献/References:

1 Caves Sivaraman J J, Naumann R B. Estimating the association between mental health disorders and suicide: A review of common sources of bias and challenges and opportunities for US-based research J . Current Epidemiology Reports, 2020, 7(4): 352-362.

2Whiteford H A, Ferrari A J, Degenhardt L, et al. The global burden of mental, neurological and substance use disorders: An analysis from The Global Burden of Disease Study 2010J. PLoS One, 2015, 10(2):e0116820.

3Marian A J. Molecular genetic studies of complex phenotypesJ. Translational Research, 2012, 159(2): 64-79.

4Gallagher M D, Chen-Plotkin A S. The post-GWAS era: From association to functionJ. American Journal of Human Genetics, 2018, 102(5): 717-730.

5Risch N, Merikangas K. The future of genetic studies of complex human diseasesJ. Science, 1996, 273(5281): 1516-1517.

6Fabbri C, Serretti A. Role of 108 schizophrenia-associated loci in modulating psychopathological dimensions in schizophrenia and bipolar disorderJ. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174(7): 757-764.

7Grove J, Ripke S, Als T D, et al. Identification of common genetic risk variants for autism spectrum disorderJ. Nature Genetics, 2019, 51(3): 431-444.

8OReilly P F, Hoggart C J, Pomyen Y, et al. MultiPhen: Joint model of multiple phenotypes can increase discovery in GWASJ. PLoS One, 2012, 7(5): e34861.

9Turley P, Walters R K, Maghzian O, et al. Multi-trait analysis of genome-wide association summary statistics using MTAGJ. Nature Genetics, 2018, 50(2): 229-237.

10Zhu H H, Zhang S L, Sha Q Y. A novel method to test associations between a weighted combination of phenotypes and genetic variantsJ. PLoS One, 2018, 13(1): e0190788.

undefined

相似文献/References:

[1]侯龙傲,贺平安.基于GWAS的多元关联分析在精神类疾病遗传相关性分析中的应用[J].浙江理工大学学报,2020,43-44(自科五):689.
 HOU Longao,HE Pingan.Application of GWASbased multivariate association analysis in genetic correlation analysis of psychiatric disorders[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科六):689.

备注/Memo

备注/Memo:
收稿日期: 2022-05-11
网络出版日期:2022-09-06
基金项目: 国家自然科学基金项目(61772027)
作者简介: 赵国英(1994-),女,山西山阴人,硕士研究生,主要从事生物信息学方面的研究
通信作者: 贺平安,E-mail:pinganhe@zstu.edu.cn
更新日期/Last Update: 2022-11-07