|本期目录/Table of Contents|

[1]黄豪,朱罕,陆双龙,等.宽带吸收和高阻盐光热转换NiCoP@NF多级结构材料的制备与性能[J].浙江理工大学学报,2022,47-48(自科五):705-713.
 HUANG Hao,ZHU Han,LU Shuanglong,et al.Preparation and properties of photothermal conversion  NiCoP@NF hierarchical structure material with wide band  absorption and high salt resistance[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科五):705-713.
点击复制

宽带吸收和高阻盐光热转换NiCoP@NF多级结构材料的制备与性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第五期
页码:
705-713
栏目:
出版日期:
2022-09-10

文章信息/Info

Title:
Preparation and properties of photothermal conversion  NiCoP@NF hierarchical structure material with wide band  absorption and high salt resistance
文章编号:
1673-3851 (2022) 09-0705-09
作者:
黄豪朱罕陆双龙段芳杜明亮
江南大学,a.化学与材料工程学院;b.合成与生物胶体教育部重点实验室,江苏无锡 214122
Author(s):
HUANG HaoZHU HanLU ShuanglongDUAN FangDU Mingliang
a.School of Chemical and Material Engineering; b.Key Laboratory of Synthetic and  Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
关键词:
过渡金属磷化物纳米结构海水淡化光热转换疏水性光吸收
分类号:
TK513
文献标志码:
A
摘要:
为实现低成本且高效的海水淡化,通过水热反应和化学气相沉积在泡沫镍(NF)上构筑层次化结构,原位生长了海胆状磷化镍钴(SU-NiCoP)和纳米花状磷化镍钴(FL-NiCoP),制备了多级结构材料。利用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、能谱分析(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、紫外-可见-近红外吸收光谱(UV-vis-NIR)和红外热成像(IR)等分析了该多级结构材料的微观形貌、晶体结构、表面化学状态和光热转换性能。结果表明:多级结构材料具有多孔结构和粗糙表面,使入射太阳光在其内部产生多次散射,并在空气/水界面将其转化为热量;在一个太阳光照强度下(1000 W/m2),多级结构材料的全光谱吸收率最高可达98.0%、蒸发速率最高达到1.51 kg/(m2·h),太阳光-蒸汽转换效率分别达到了81.7%和96.1%;疏水处理进一步提高了该太阳能光热转换蒸发器的高阻盐性,可以在高质量分数(质量分数10%)的NaCl溶液中长时间保持蒸发性能,赋予该材料优异的循环稳定性和高阻盐性。

参考文献/References:

[1]Meng S, Zha X J, Wu C, et al. Interfacial radiationabsorbing hydrogel film for efficient thermal utilization on solar evaporator surfaces[J].Nano Letters, 2021, 21(24): 10516-10524.

[2]Lei Z, Sun X, Zhu S, et al. Nature inspired MXenedecorated 3D honeycombfabric architectures toward efficient water desalination and salt harvesting[J]. NanoMicro Letters, 2021, 14(1): 1-16.

[3]Chen J, Yin J L, Li B, et al. Janus evaporators with selfrecovering hydrophobicity for saltrejecting interfacial solar desalination[J].ACS Nano, 2020, 14(12): 17419-17427.

[4]Kim S, Tahir Z, Rashid M U, et al. Highly efficient solar vapor generation via a simple morphological alteration of TiO 2 films grown on a glassy carbon foam[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 50911-50919.

[5]Li X, Li J, Lu J, et al. Enhancement of interfacial solar vapor generation by environmental energy[J].Joule, 2018, 2(7): 1331-1338.

[6]Chaibun T, Puenpa J, Ngamdee T, et al. Rapid electrochemical detection of coronavirus SARSCoV2[J]. Nature Communications, 2021, 12(1):1-10.

[7]Pang Y, Zhang J, Ma R, et al. Solarthermal water evaporation: A review[J]. ACS Energy Letters, 2020, 5(2): 437-456.

[8]Jin X, Li Y R, Li W, et al. Nanomaterial design for efficient solardriven steam generation[J].ACS Applied Energy Materials, 2019, 2(9): 6112-6126.

[9]Ying L R, Zhu H, Huang H, et al. Scalable NiCo x S y PANI@GF membranes with broadband light absorption and high saltresistance for efficient solardriven interfacial evaporation[J]. ACS Applied Energy Materials, 2021, 4(4): 3563-3572.

[10]Guo Y H, Zhao X, Zhao F, et al. Tailoring surface wetting states for ultrafast solar driven water evaporation[J]. Energy & Environmental Science, 2020, 13(7): 2087-2095.

undefined

备注/Memo

备注/Memo:
收稿日期: 2022-02-22
网络出版日期:2022-04-05

作者简介: 黄豪(1997-),男,河南焦作人,硕士研究生,主要从事材料学方面的研究
通信作者: 杜明亮,E-mail:du@jiangnan.edu.cn

更新日期/Last Update: 2022-09-07